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Chapter 1

Precision issues and epsilons

Computational geometry very often means working with floating-point val-
ues. Even when the input points are all integers, as soon as intermediate
steps require things like line intersections, orthogonal projections or circle
tangents, we have no choice but to use floating-point numbers to represent
coordinates.

Using floating-point numbers comes at a cost: loss of precision. The
number of distinct values that can be represented by a data type is limited
by its number of bits, and therefore many “simple” values like 0.1 or

√
2

cannot be exactly represented. Worse, even if a and b are exact, there is no
guarantee that simple operations like a + b, a − b or ab will give an exact
result.

Though many people are well aware that those issues exist, they will
most often argue that they only cause small imprecisions in the answer in the
end, and do not have any major consequence or the behavior of algorithms.
In the rest of this chapter, we will show how both those assumptions can
sometimes be false, then present some ways in which we can make accurate
statements about how precision loss affects algorithms, go on with a few
practical examples, and finally give some general advice to problem solvers
and setters.

1.1 Small imprecisions can become big impreci-
sions

In this section we explore two ways in which very small starting imprecisions
can become very large imprecisions in the final output of a program.
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1.1.1 When doing numerically unstable computations

There are some types of computations which can transform small impreci-
sions into catastrophically large ones, and line intersection is one of them.
Imagine you have four points A,B,C,D which were obtained through an
previous imprecise process (for example, their position can vary by a dis-
tance of at most r = 10−6), and you have to compute the intersection of
lines AB and CD.

For illustration, we represent the imprecisions on the points with small
disk of radius r: the exact position is the black dot, while the small gray
disk contains the positions it could take because of imprecisions. The dashed
circle gives an idea of where point I might lie.

In the best case, when A,B and C,D aren’t too close together, and not
too far from the intersection point I, then the imprecision on I isn’t too big.

A

B

C

D

But if those conditions are not respected, the intersection I might vary in
a very wide range or even fail to exist, if given the imprecision lines AB and
CD end up being parallel, or if A and B (or C and D) end up coinciding.
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A
B

C
D

This shows that finding the intersection of two lines defined by imprecise
points is a task that is inherently problematic for floating-point arithmetic,
as it can produce wildly incorrect results even if the starting imprecision is
quite small.

1.1.2 With large values and accumulation

Another way in which small imprecisions can become big is by accumulation.
Problem “Keeping the Dogs Apart”, which we treat in more detail in a case
study in section 1.4.1, is a very good example of this. In this problem, two
dogs run along two polylines at equal speed and you have to find out the
minimum distance between them at any point in time.

Even though the problem seems quite easy and the computations do not
have anything dangerous for precision (mostly just additions, subtractions
and distance computations), it turns out to be a huge precision trap, at least
in the most direct implementation.

Let’s say we maintain the current distance from the start for both dogs.
There are 105 polyline segments of length up to

√
2 × 104, so this distance

can reach
√

2 × 109. Besides, to compute the sum, we perform 105 sum
operations which can all bring a 2−53 ≈ 1.11 × 10−16 relative error if we’re
using double. So in fact the error might reach

(√
2× 109

)
× 105 × 2−53 ≈ 0.016

Although this is a theoretical computation, the error does actually get
quite close to this in practice, and since the tolerance on the answer is 10−4

this method actually gives a WA verdict.
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This shows that even when only very small precision mistakes are made
(≈ 1.11× 10−16), the overal loss of precision can get very big, and carefully
checking the maximal imprecision of your program is very important.

1.2 Small imprecisions can break algorithms

In this section, we explore ways in which small imprecisions can modify the
behavior of an algorithm in ways other than just causing further impreci-
sions.

1.2.1 When making binary decisions

The first scenario we will explore is when we have to make clear-cut decisions,
such as deciding if two objects touch.

Let’s say we have a line l and a point P computed imprecisely, and we
want to figure out if the point lies on the line. Obviously, we cannot simply
check if the point we have computed lies on the line, as it might be just
slightly off due to imprecision. So the usual approach is to compute the
distance from P to l and then figure out if that distance is less than some
small value like εcutoff = 10−9.

While this approach tends to works pretty well in practice, to be sure
that this solution works in every case and choose εcutoff properly,1 we need to
know two things. First, we need to know εerror, the biggest imprecision that
we might make while computing the distance. Secondly, and more critically,
we need to know εchance, the smallest distance that point P might be from l
while not being on it, in other words, the closest distance that it might be
from l “by coincidence”.

Only once we have found those two values, and made sure that εerror <
εchance, can we then choose the value of εcutoff within [εerror, εchance).

2 Indeed,
if εcutoff < εerror, there is a risk that P is on l but we say it is not, while if
εcutoff ≥ εchance there is a risk that P is not on l but we say it is.

Even though εerror can be easily found with some basic knowledge of
floating-point arithmetic and a few multiplications (see next section), find-
ing εchance is often very difficult. It depends directly on which geometric
operations were done to find P (intersections, tangents, etc.), and in most
cases where εchance can be estimated, it is in fact possible to make the com-
parison entirely with integers, which is of course the preferred solution.

1And motivated problem setters do tend to find the worst cases.
2In practice you should try to choose εcutoff so that there is a factor of safety on both

sides, in case you made mistakes while computing εerror or εchance.
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1.2.2 By violating basic assumptions

Many algorithms rely on basic geometric axioms in order to provide their
results, even though those assumptions are not always easy to track down.
This is especially the case for incremental algorithms, like algorithms for
building convex hulls. And when those assumptions are violated by using
floating-point numbers, this can make algorithms break down in big ways.

Problems of this type typically happen in situation when points are
very close together, or are nearly collinear/coplanar. The ways to solve
the problem depend a lot on what the algorithm, but tricks like eliminating
points that are too close together, or adding random noise to the coordinates
to avoid collinearity/coplanarity can be very useful.

For concrete examples of robustness problems and a look into the weird
small-scale behavior of some geometric functions, see [1].

1.3 Modelling precision

In this section, we try to build a basic model of precision errors that we can
use to obtain a rough but reliable estimate of a program’s precision.

1.3.1 The issue with “absolute or relative” error

When the output of a problem is some real value like a distance or an area,
the problem statement often specifies a constraint such as: “The answer
should be accurate to an absolute or relative error of at most 10−5.” While
considering the relative accuracy of an answer can be a useful and conve-
nient way to specify the required precision of an answer in some cases (for
example in tasks where only addition and multiplication of positive values
are performed), we think that for most geometry problems it is unsuitable.

The reason for this is the need to subtract3 large values of similar mag-
nitude. For example, suppose that we are able to compute two values with
relative precision 10−6, such as A = 1000± 10−3 and B = 999± 10−3. If we
compute their difference, we obtain A−B = 1±2×10−3. The absolute error
remains of a comparable size, being only multiplied by 2, but on the other
hand relative error increases drastically from 10−6 to 2×10−3 because of the
decrease in magnitude. This phenomenon is called catastrophic cancellation.

In fact, whenever a certain relative error can affect big numbers, catas-
trophic cancellation can cause the corresponding absolute error to appear
on very small values. The consequence is that if a problem statement has a

3Strictly speaking, we mean both subtraction of values of the same sign, and addition
of values of opposite signs.
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certain tolerance on the relative error of the answer, and a correct solution
has an error close to it for the biggest possible values, then the problem
statement also needs to specify a tolerance on the corresponding absolute
error in case catastrophic cancellation happens. And since that tolerance on
absolute error is at least as tolerant as the tolerance on relative error for all
possible values, it makes it redundant. This is why we think that tolerance
on “absolute or relative error” is misleading at best.4

Catastrophic cancellation shows that relative precision is not a reliable
way to think about precision whenever subtractions are involved — and that
includes the wide majority of geometry problems. In fact, the most common
geometric operations (distances, intersections, even dot/cross products) all
involve subtractions of values which could be very similar in magnitude.

Examples of this appear in two of the case studies of section 1.4: in prob-
lem “Keeping the Dogs Apart” and when finding the solution of a quadratic
equation.

Another example occurs when computing areas of polygons made of
imprecise points. Even when the area ends up being small, the imprecision
on it can be large if there were computations on large values in intermediate
steps, which is the case when the coordinates have large magnitudes.

area � area

absolute error ≈ absolute error

relative error � relative error

Because of this, we advise against trying to use relative error to build
precision guarantees on the global scale of a whole algorithm, and we recom-
mend to reason about those based on absolute error instead, as we describe
below.

4In fact, working with relative error tolerances would make sense if this “relative error”
was defined based on the magnitude of the input coordinates rather than on the magni-
tude of the answer, as we will see starting from section 1.3.3. For example, if all input
coordinates are bounded by M , it would make sense to require an absolute precision of
M2× 10−6 on an area. But since the answer can remain very small even if the magnitude
of the input grows, requiring a fixed relative precision on it is usually too constraining for
test cases with inputs of large magnitude.
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1.3.2 Precision guarantees from IEEE 754

Nearly all implementations of floating-point numbers obey the specifications
of the IEEE 754 standard. This includes float and double in Java and C++,
and long double in C++. The IEEE 754 standard gives strong guarantees
that ensure floating-point numbers will have similar behavior even in differ-
ent languages and over different platforms, and gives users a basis to build
guarantees on the precision of their computations.

The basic guarantees given by the standard are:

1. decimal values entered in the source code or a file input are represented
by the closest representable value;

2. the five basic operations (+,−,×, /,√x) are performed as if they were
performed with infinite precision and then rounded to the closest rep-
resentable value.

There are several implications. First, this means that integers are rep-
resented exactly, and basic operations on them (+,−,×) will have exact
results, as long as they are small enough to fit within the significant digits
of the type: ≥ 9 × 1015 for double, and ≥ 1.8 × 1019 for long double. In
particular, long double can perform exactly all the operations that a 64-bit
integer type can perform.

Secondly, if the inputs are exact, the relative error on the result of any
of those five operations (+,−,×, /,√x) will be bounded by a small constant
that depends on the number of significant digits in the type.5 This constant
is < 1.2 × 10−16 for double and < 5.5 × 10−20 for long double. It is called
the machine epsilon and we will often write it ε.

1.3.3 Considering the biggest possible magnitude

We explained earlier why we need to work with absolute error, but since
IEEE 754 gives us guarantees in terms of relative errors, we need to consider
the biggest magnitude that will be reached during the computations. In
other words, if all computations are precise up to a relative error of ε, and
the magnitude of the values never goes over M , then the absolute error of
an operation is at most Mε.

This allows us to give good guarantees for numbers obtained after a
certain number of + and − operations: a value that is computed in n opera-
tions6 will have an absolute error of at most nMε compared to the theoretical

5This assumes the magnitudes do not go outside the allowable range (≈ 10±308 for
double and ≈ 10±4932 for long double) which almost never happens for geometry problems.

6Note that when we say a value is “computed in n operations” we mean that it is
computed by a single formula that contains n operations, and not that n operations are
necessary to actually compute it. For example (a+b)+(a+b) is considered to be “computed
in 3 operations” even though we can implement this with only 2 additions.
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result.

We can prove the guarantee by induction: let’s imagine we have two
intermediate results a and b who were computed in na and nb operations
respectively. By the inductive hypothesis their imprecise computed values
a′ and b′ respect the following conditions.

|a′ − a| ≤ naMε |b′ − b| ≤ nbMε

The result of the floating-point addition of a′ and b′ is round(a′+b′) where
round() is the function that rounds a real value to the closest representable
floating-point value. We know that | round(x) − x| ≤ Mε, so we can find a
bound on the error of the addition:

| round(a′ + b′)− (a+ b)|
=
∣∣[round(a′ + b′)− (a′ + b′)

]
+
[
(a′ + b′)− (a+ b)

]∣∣
≤ | round(a′ + b′)− (a′ + b′)|+ |(a′ + b′)− (a+ b)|
≤Mε+ |(a′ − a) + (b′ − b)|
≤Mε+ |a′ − a|+ |b′ − b|
≤Mε+ naMε+ nbMε

= (na + nb + 1)Mε

where the first two steps follow from the triangle inequality. Since the sum
is “computed in na +nb + 1 operations”, the bound of (na +nb + 1)Mε that
is obtained is small enough. The proof for subtraction is very similar.

1.3.4 Incorporating multiplication

The model above gives good guarantees but is very limited: it only works for
computations that use only addition and subtraction. Multiplication does
not give guarantees of the form nMε. However, we can still say interesting
things if we take a closer look the different types of values we use in geometry:

• Adimensional “0D” values: e.g. angles, constant factors;

• 1D values: e.g. coordinates, lengths, distances, radii;

• 2D values: e.g. areas, dot products, cross products;

• 3D values: e.g. volumes, mixed products.

Usually, the problem statement gives guarantees on the magnitude of
coordinates, so we can find some constant M so that all 1D values that will
be computed in the code have a magnitude less than M . And since 2D and
3D values are usually created by products of 1D values, we can usually say
that 2D values are bounded in magnitude by M2 and 3D values by M3 (we
may need to multiply M by a constant factor).
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It turns out that computations made of +,−,× and in which all d-
dimensional values are bounded in magnitude by Md have good precision
guarantees. In fact, we can prove that the absolute error of a d-dimensional
number computed in n operations is at most Md ((1 + ε)n − 1), which as-
suming nε� 1 is about nMdε.

The proof is similar in spirit to what we did with only + and − earlier.
Since it is a bit long, we will not detail it here, but it can be found in
section B.1, along with a more precise definition of the precision guarantees
and its underlying assumptions.

Note that this does not cover multiplication by an adimensional factor
bigger than 1: this makes sense, since for example successive multiplication
by 2 of a small value could make the absolute error grow out of control even
if the magnitude remains under Md for a while.

In other cases, this formula nMdε gives us a quick and reliable way to
estimate precision errors.

1.3.5 Why other operations do not work as well

Now that we have precision guarantees for +,−,× operations, one might
be tempted to try and include division as well. However, if that was pos-
sible, then it would be possible to give strong precision guarantees for line
intersection, and we saw in subsection 1.1.1 that this is not the case.

The core of the problem is: if some value x is very close to zero, then
a small absolute error on x will create a large absolute error on 1/x. In
fact, if x is smaller than its absolute error, the computed value 1/x might
be arbitrarily big, both in the positive or negative direction, and might not
exist. This is why it is hard to give guarantees on the results of a division
whose operands are already imprecise.

An operation that also has some problematic behavior is
√
x. If x is

smaller than its absolute error, then
√
x might or might not be defined in

the reals. However, if we ignore the issue of existence by assuming that
the theoretical and actual value of x are both nonnegative, then we can say
some things on the precision.

Because
√
x is a concave increasing function, a small imprecision on x

will have the most impact on
√
x near 0.
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δ x

√
x

close to 0 ⇒ big effect

δ x

√
x

far from 0 ⇒ small effect

Therefore for a given imprecision δ, the biggest imprecision on
√
x it

might cause is
√
δ. This is usually pretty bad: if the argument of the square

root had an imprecision of nM2ε then in the worst case the result will have
an imprecision of

√
nM
√
ε, instead of the nMε bound that we have for

+,−,× operations.

For example let us consider a circle C of radius tangent to a line l. If C
gets closer to l by 10−6, then the intersection points will move by about

√
12 − (1− 10−6)2 ≈

√
2× 10−6 =

√
2× 10−3

away from the tangency point, as pictured below.

l C l C

Note that here we have only shown that 1/x and
√
x perform poorly on

imprecise inputs. Please bear in mind that on exact inputs, the IEEE 754
guarantees that the result is the closest represented floating-point number.
So when the lines and circles are defined by integers, line intersections and
circle-line intersections have a relative precision error proportional to ε and
thus an absolute error proportional to Mε.

1.4 Case studies

In this section, we explore some practical cases in which the imprecisions of
floating-point numbers can cause problems and give some possible solutions.

1.4.1 Problem “Keeping the Dogs Apart”

We will first talk about problem “Keeping the Dogs Apart”, which we
mentioned before, because it is a good example of accumulation of error

15



and how to deal with it. It was written by Markus Fanebust Dregi for
NCPC 2016. You can read the full statement and submit it at https:
//open.kattis.com/problems/dogs.

Here is a summarized problem statement: There are two dogs A and
B, walking at the same speed along different polylines A0 . . . An−1 and
B0 . . . Bm−1, made of 2D integer points with coordinates in [0, 104]. They
start at the same time from A0 and B0 respectively. What is the closest dis-
tance they will ever be from each other before one of them reaches the end of
its polyline? The relative/absolute error tolerance is 10−4, and n,m ≤ 105.

The idea of the solution is to divide the time into intervals where both
dogs stay on a single segment of their polyline. Then the problem reduces
to the simpler task of finding the closest distance that get when one walks
on [PQ] and the other on [RS], with |PQ| = |RS|. This division into time
intervals can be done with the two-pointers technique: if we remember for
each dog how many segments it has completely walked and their combined
length, we can work out when is the next time on of the dogs will switch
segments.

The main part of the code looks like this. We assume that moveBy(a
,b,t) gives the point on a segment [AB] at a certain distance t from A,
while minDist(p,q,r,s) gives the minimum distance described above for
P,Q,R, S.

int i = 0, j = 0; // current segment of A and B
double ans = abs(a[0]-b[0]), // closest distance so far

sumA = 0, // total length of segments fully walked by A
sumB = 0; // total length of segments fully walked by B

// While both dogs are still walking
while (i+1 < n && j+1 < m) {

double start = max(sumA, sumB), // start of time interval
dA = abs(a[i+1]-a[i]), // length of current segment of

A
dB = abs(b[j+1]-b[j]), // length of current segment of

B
endA = sumA + dA, // time at which A will end this

segment
endB = sumB + dB, // time at which B will end this

segment
end = min(endA, endB); // end of time interval

// Compute start and end positions of both dogs
pt p = moveBy(a[i], a[i+1], start-sumA),

q = moveBy(a[i], a[i+1], end-sumA),
r = moveBy(b[j], b[j+1], start-sumB),
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s = moveBy(b[j], b[j+1], end-sumB);

// Compute closest distance for this time interval
ans = min(ans, minDist(p,q,r,s));

// We get to the end of the segment for one dog or the other,
// so move to the next and update the sum of lengths
if (endA < endB) {

i++;
sumA += dA;

} else {
j++;
sumB += dB;

}
}
// output ans

As we said in section 1.1.2, the sums sumA and sumB accumulate very
large errors. Indeed, they can both theoretically reach M =

√
2× 109, and

are based on up to k = 105 additions. With double, ε = 2−53, so we could
reach up to kMε ≈ 0.016 in absolute error in both sumA and sumB. Since
this error directly translates into errors in P,Q,R, S and is bigger than the
tolerance of 10−4, this causes WA.

In the rest of this section, we will look at two ways we can avoid this
large accumulation of error in sumA and sumB. Since this is currently much
bigger than what could have been caused by the initial length computations,
moveBy() and minDist(), we will consider those errors to be negligible for
the rest of the discussion.

Limiting the magnitude involved

The first way we can limit the accumulation of error in sumA and sumB is to
realize that in fact, we only care about the difference between them: if we
add a certain constant to both variables, this doesn’t change the value of
start-sumA, end-sumA, start-sumB or end-sumB, so the value of p, q, r, s is
unchanged.

So we can adapt the code by adding these lines at the end of the while
loop:

double minSum = min(sumA, sumB);
sumA -= minSum;
sumB -= minSum;
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After this, one of sumA and sumB becomes zero, while the other carries
the error on both. In total, at most n+m additions and n+m subtractions
are performed on them, for a total of k ≤ 4× 105. But since the difference
between sumA and sumB never exceeds the length of one segment, that is,
M =

√
2× 104, the error is much lower than before:

kMε =
(
4× 105

)
×
(√

2× 104
)
× 2−53 ≈ 6.3× 10−7

so it gives an AC verdict.

So here we managed to reduce the precision mistakes on our results by
reducing the magnitude of the numbers that we manipulate. Of course, this
is only possible if the problem allows it.

Summing positive numbers more precisely

Now we present different way to reduce the precision mistake, based on the
fact that all the terms in the sum we’re considering are positive. This is a
good thing, because it avoids catastrophic cancellation (see section 1.3.1).

In fact, addition of nonnegative numbers conserves relative precision: if
you sum two nonnegative numbers a and b with relative errors of kaε and kbε
respectively, the worst-case relative error on a+b is about7 (max(ka, kb)+1)ε.

Let’s say we need to compute the sum of n nonnegative numbers a1, . . . , an.
We suppose they are exact. If we perform the addition in the conventional
order, like this:

(
· · ·
((

(a1 + a2) + a3

)
+ a4

)
+ · · ·

)
+ an

then

• a1 + a2 will have a relative error of (max(0, 0) + 1)ε = ε;

• (a1 + a2) + a3 will have a relative error of (max(1, 0) + 1)ε = 2ε;

•
(
(a1 +a2) +a3

)
+a4 will have a relative error of (max(2, 0) + 1)ε = 3ε;

• . . . and so on.

So the complete sum will have an error of (n− 1)ε, not better than what we
had before.

But what if we computed the additions in another order? For example,
with n = 8, we could do this:

(
(a1 + a2) + (a3 + a4)

)
+
(
(a5 + a6) + (a7 + a8)

)

7It could in fact go up to (max(ka, kb)(1 + ε) + 1)ε but the difference is negligible for
our purposes.
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then all additions of two numbers have error ε, all additions of 4 num-
bers have error (max(1, 1) + 1)ε = 2ε, and the complete addition has error
(max(2, 2) + 1)ε = 3ε, which is much better than (n− 1)ε = 7ε. In general,
for n = 2k, we can reach a relative precision of kε.

We can use this grouping technique to create an accumulator such that
the relative error after adding n numbers is at most 2 log2(n)ε.8 Here is an
O(n) implementation:

struct stableSum {
int cnt = 0;
vector<double> v, pref{0};
void operator+=(double a) {

assert(a >= 0);
int s = ++cnt;
while (s % 2 == 0) {

a += v.back();
v.pop_back(), pref.pop_back();
s /= 2;

}
v.push_back(a);
pref.push_back(pref.back() + a);

}
double val() {return pref.back();}

};

Let’s break this code down. This structure provides two methods: add(
a) to add a number a to the sum, and val() to get the current value of the
sum. Array v contains the segment sums that currently form the complete
sum, similar to Fenwick trees: for example, if we have added 11 elements, v
would contain three elements:

v = {a1 + · · ·+ a8, a9 + a10, a11}

while pref contains the prefix sums of v: pref[i] contains the sum of the i
first elements of v.

Function add() performs the grouping: when adding a new element a, it
will merge it with the last element of v while they contain the same number
of terms, then a is added to the end of v. For example, if we add the 12th

8We could even get (log2 n+1)ε but we don’t know a way to do it faster than O(n logn).
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element a12, the following steps will happen:

v = {a1 + · · ·+ a8, a9 + a10, a11} a = a12

v = {a1 + · · ·+ a8, a9 + a10} a = (a11) + a12

v = {a1 + · · ·+ a8} a = (a9 + a10) + a11 + a12

v = {a1 + · · ·+ a8, a9 + a10 + a11 + a12}

The number of additions we have to make for the ith number is the
number of times it is divisible by 2. Since we only add one element to v
when adding an element to the sum, this is amortized constant time.

By simply changing the types of sumA and sumB to stableSum and adding
.val() whenever the value is read in the initial code, we can get down to an
error of about

2 log2

(
105
)
Mε =

(
2 log2

(
105
))
×
(√

2× 109
)
× 2−53 ≈ 5.2× 10−6

which also gives an AC verdict.9

This is not as good as the precision obtained with the previous method,
but that method was specific to the problem, while this one can be applied
whenever we need to compute sums of nonnegative numbers.

1.4.2 Quadratic equation

As another example, we will study the precision problems that can occur
when computing the roots of an equation of the type ax2 + bx+ c = 0 with
a 6= 0. We will see how some precision problems are unavoidable, while
others can be circumvented by

When working with full-precision reals, we can solve quadratic equations
in the following way. First we compute the discriminant ∆ = b2 − 4ac. If
∆ < 0, there is no solution, while if ∆ ≥ 0 there is are 1 or 2 solutions, given
by

x =
−b±

√
∆

2a

The first difficulty when working with floating-point numbers is the com-
putation of ∆: if ∆ ≈ 0, that is b2 ≈ 4ac, then the imprecisions can change
the sign of ∆, therefore changing the number of solutions.

Even if that does not happen, since we have to perform a square root,
the problems that we illustrated with line-circle intersection in section 1.3.5
can also happen here.10 Take the example of equation x2 − 2x + 1 = 0,

9Theoretically we can’t really be sure though, since both sumA and sumB could have that
error, and we still have to take into account the other operations performed.

10Which is not surprising, since the bottom of a parabola looks a lot like a circle.
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which is a single root x = 0. If there is a small error on c, it can translate
into a large error on the roots. For example, if c = 1− 10−6, then the roots
become

x =
−b±

√
b2 − 4ac

2a
=

2±
√

4− 4(1− 10−6)

2
=

2± 2
√

10−6

2
= 1± 10−3.

where the error 10−3 is much bigger than the initial error on c.

x2−2x+(1+ ε) = 0 x2 − 2x+ 1 = 0 x2−2x+(1− ε) = 0

no solution x = 1 x = 1±√ε

Even if the computation of
√

∆ is very precise, a second problem can
occur. If b and

√
∆ have a similar magnitude, in other words when b2 � ac,

then catastrophic cancellation will occur for one of the roots. For example
if a = 1, b = 104, c = 1, then the roots will be:

x1 =
−104 −

√
108 − 4

2
≈ −104 x2 =

−104 +
√

108 − 4

2
≈ 10−4

The computation of x1 goes fine because −b and −
√

∆ have the same
sign. But because the magnitude of −b+

√
∆ is 108 times smaller than the

magnitude of b and
√

∆, the relative error on x2 will be 108 times bigger
than the relative error on b and

√
∆.

Fortunately, in this case we can avoid catastrophic cancellation entirely
by rearranging the expression:

−b±
√
b2 − 4ac

2a
=
−b±

√
b2 − 4ac

2a
× −b∓

√
b2 − 4ac

−b∓
√
b2 − 4ac

=
(−b2)−

(√
b2 − 4ac

)2

2a
(
−b∓

√
b2 − 4ac

)

=
4ac

2a
(
−b∓

√
b2 − 4ac

)

=
2c

−b∓
√
b2 − 4ac

In this new expression, since the sign of the operation is opposite from the
sign in the original expression, catastrophic cancellation happens in only one
of the two.
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So if b ≥ 0, we can use −b−
√

∆
2a for the first solution and 2c

−b−
√

∆
for

the second solution, while if b ≤ 0, we can use 2c
−b+
√

∆
for the first solution

and −b+
√

∆
2a for the second solution. We only need to be careful that the

denominator is never zero.

This gives a safer way to find the roots of a quadratic equation. This
function returns the number of solutions, and places them in out in no
particular order.

int quadRoots(double a, double b, double c, pair<double,double> &out
) {
assert(a != 0);
double disc = b*b - 4*a*c;
if (disc < 0) return 0;
double sum = (b >= 0) ? -b-sqrt(disc) : -b+sqrt(disc);
out = {sum/(2*a), sum == 0 ? 0 : (2*c)/sum};
return 1 + (disc > 0);

}

In many cases, there are several ways to write an expression, and they
can have very different behaviors when used with floating-point numbers. So
if you realize that the expression you are using can cause precision problems
in some cases, it can be a good idea to rearrange the expression to handle
them, as we did here.

1.4.3 Circle-circle intersection

This last case study will study one possible implementation for the inter-
section of two circles. It will show us why we shouldn’t rely too much on
mathematical truths when building our programs.

We want to know whether two circles of centers C1, C2 and radii r1, r2

touch, and if they do what are the intersection points. Here, we will solve
this problem with triangle inequalities and the cosine rule.11 Let d = |C1C2|.
The question of whether the circles touch is equivalent to the question
of whether there exists a (possibly degenerate) triangle with edge lengths
d, r1, r2.

11The way we actually implement it in this book is completely different.
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C1 C2

r1 r2

d

α

We know that such a triangle exists iff the triangle inequalities are re-
spected, that is:

|r2 − r1| ≤ d ≤ r1 + r2

If this is true, then we can find the angle at C1, which we’ll call α, thanks
to the cosine rule:

cosα =
d2 + r2

1 − r2
2

2dr1

Once we have α, we can find the intersection points in the following way:
if we take vector

#        »

C1C2, resize it to have length r1, then rotate by α in either
direction, this gives the vectors from C1 to either intersection points.

C1 C2 C1 C2 C1 C2

resized rotated right rotated left

This gives the following code. It uses a function abs() to compute the
length of a vector (see section 2.1.2) and a function rot() to rotate a vector
by a given angle (see section 2.2.3).

bool circleCircle(pt c1, double r1, pt c2, double r2, pair<pt,pt> &
out) {
double d = abs(c2-c1);
if (d < abs(r2-r1) || d > r1+r2) // triangle inequalities

return false;
double alpha = acos((d*d + r1*r1 - r2*r2)/(2*d*r1));
pt rad = (c2-c1)/d*r1; // vector C1C2 resized to have length d
out = {c1 + rot(rad, -alpha), c1 + rot(rad, alpha)};
return true;

}
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This implementation is quite nice, but unfortunately it will sometimes
output nan values. In particular, if

r1 = 0.625 r2 = 0.3750000000000004 d = 1.0000000000000004

then the triangle inequalities are respected, so the function returns true,
but the program computes

d2 + r2
1 − r2

2

2dr1
> 1

In fact, this is mathematically impossible! The cosine rule should give
values in [−1, 1] as long as the edge lengths respect the triangle inequality.
To make sure, we can compute:

d2 + r2
1 − r2

2

2dr1
> 1 ⇒ d2 + r2

1 − r2
2 > 2dr1

⇔ (d− r1)2 > r2
2

⇔ |d− r1| > r2

⇔ d > r2 + r1 or r1 > d+ r2

Indeed, both are impossible because of the triangle inequalities. So this
must be the result of a few unfortunate roundings made while computing
the expression.

There are two possible solutions to this. The first solution would be to
just treat the symptoms: make sure the cosine is never outside [−1, 1] by
either returning false or by moving it inside:

double co = (d*d + r1*r1 - r2*r2)/(2*d*r1);
if (abs(co) > 1) {

return false; // option 1
co /= abs(co); // option 2

}
double alpha = cos(co);

The second solution, which we recommend, is based on the principles
that we should always try to minimize the number of comparisons we make,
and that if we have to do some computation that might fail (giving a result of
nan or infinity), then we should test the input of that computation directly.

So instead of testing the triangle inequalities, we test the value of cosα
directly, because it turns out that it will be in [−1, 1] iff the triangle inequal-
ities are verified. This gives the following code, which is a bit simpler and
safer.

bool circleCircle(pt c1, double r1, pt c2, double r2, pair<pt,pt> &
out) {
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double d = abs(c2-c1), co = (d*d + r1*r1 - r2*r2)/(2*d*r1);
if (abs(co) > 1) return false;
double alpha = acos(co);
pt rad = (c2-c1)/d*r1; // vector C1C2 resized to have length d
out = {c1 + rot(rad, -alpha), c1 + rot(rad, alpha)};
return true;

}

1.5 Some advice

In this last section, we present some general advice about precision issues
when solving or setting a problem.

1.5.1 For problem solvers

One of the keys to success in geometry problems is to develop a reliable
implementation methodology as you practise. Here are some basics to get
you started.

As you have seen in this chapter, using floating-point numbers can cause
many problems and betray you in countless ways. Therefore the first and
most important piece of advice is to avoid using them altogether. Surpris-
ingly many geometric computations can be done with integers, and you
should always aim to perform important comparisons with integers, by first
figuring out the formula on paper and then implementing it without division
or square root.

When you are forced to use floating-point numbers, you should minimize
the risks you take. Indeed, thinking about everything that could go wrong
in an algorithm is very hard and tedious, so if you take many inconsiderate
risks, the time you will need to spend too much time on verification (or not
spend it and suffer the consequences). In particular:

• Minimize the number of dangerous operations you make, such as divi-
sions, square roots, and trigonometric functions. Some of these func-
tions can amplify precision mistakes, and many are defined on re-
stricted domains. Make sure you do not go out of the domains by
considering every single one of them carefully.

• Separate cases sparingly. Many geometry problems require some case-
work, making comparisons to separate them can be unsafe, and every
case adds more code and more reasons for failures. When possible, try
to write code that handles many situations at once.

• Do not rely too much on mathematical truths. Things that are true for
reals are not necessarily true for floating-point numbers. For example,
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r2 − d2 and (r + d)(r − d) are not always exactly the same value. Be
extra careful when those values are then used in an operation that is
not defined everywhere (like

√
x, arccos(x), tan(x), x

y etc.).

In general, try to build programs that are resistant to the oddities of
floating-point numbers. Imagine that some evil demon is slightly modifying
every result you compute in the way that is most likely to make your program
fail. And try to write clean code that is clearly correct at first glance. If you
need long explanations to justify why your program will not fail, then it is
more likely that your program will in fact fail.

1.5.2 For problem setters

Finally, here is some general advice about precision issues when creating a
geometry problem and its datasets.

• Never use floating-point numbers as inputs, as this will already cause
imprecisions when first reading the input numbers, and completely
exclude the use of integers make it impossible to determine some things
with certainty, like whether two segmentns touch, whether some points
are collinear, etc.

• Make the magnitude of the input coordinates as small as possible to
avoid causing overflows or big imprecisions in the contestant’s codes.

• Favor problems where the important comparisons can be made entirely
with integers.

• Avoid situations in which imprecise points are used for numerically
unstable operations such as finding the intersection of two lines.

• In most cases, you should specify the tolerance in terms of absolute
error only (see subsection 1.3.1).

• Make sure to prove that all correct algorithm are able to reach the
precision that you require, and be careful about operations like circle-
line intersection which can greatly amplify imprecisions. Since error
analysis is more complicated than it seems at first sight and requires
a bit of expertise, you may want to ask a friend for a second opinion.
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Chapter 2

Basics

2.1 Points and vectors

In this section, we will first introduce complex numbers, because they are a
useful way to think about and represent 2D points, especially when rotations
are involved. We will then present two different ways to represent points
in code: one by creating our own structure, the other by using the C++
built-in complex type. Either can be used to run the code samples in this
book, though complex requires less typing.

2.1.1 Complex numbers

Complex numbers are an extension of the real numbers with a new unit,
the imaginary unit, noted i. A complex number is usually written as a+ bi
(for a, b ∈ R) and we can interpret it geometrically as point (a, b) in the
two-dimensional plane, or as a vector with components #»v = (a, b). We
will sometimes use all these notations interchangeably. The set of complex
numbers is written as C.

5 + 3i

#»v =
(5,

3)

5

3i
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Basic operations

Complex numbers are added, subtracted and multiplied by scalars as if i
were an unknown variable. Those operations are equivalent to the same
operations on vectors.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (addition)

(a+ bi)− (c+ di) = (a− c) + (b− d)i (subtraction)

k(a+ bi) = (ka) + (kb)i (multiplication by scalar)

Geometrically, adding or subtracting two complex numbers #»v = (a, b) and
#»w = (c, d) corresponds to making #»w or its opposite start at the end of
#»v , while multiplying #»v by a positive real k corresponds to multiplying its
length by k but keeping the same direction.

#»v

#»w

#»w
#»v
+

#»w

addition

#»v

#»w

#»v − #»w

#»v − #»w

subtraction

#»v

#»v

2
#»v

multiplication by scalar

Polar form

The polar form is another way to represent complex numbers. To denote
a complex #»v = a + bi, instead of looking at the real and complex parts,
we look at the absolute value r, the distance from the origin (the length of
vector #»v ), and the argument ϕ, the amplitude of the angle that #»v forms
with the positive real axis.
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a+ bi

r =

√ a
2 +

b2

ϕ

r cosϕ

(r sinϕ)i

For a given complex number a+ bi, we can compute its polar form as

r = |a+ bi| =
√
a2 + b2

ϕ = arg(a+ bi) = atan2(b, a)

and conversely, a complex number with polar coordinates r, ϕ can be written

r cosϕ+ (r sinϕ)i = r(cosϕ+ i sinϕ) =: r cisϕ

where cisϕ = cosϕ+ i sinϕ is the unit vector that forms an angle of ampli-
tude ϕ with the positive real axis.

Note that this is not a one-to-one mapping. Firstly, adding or subtracting
2π from ϕ doesn’t change the point being represented; to solve this problem,
ϕ is generally taken in (−π, π]. Secondly, when r = 0, all values of ϕ
represent the same point.

Multiplication

Complex multiplication is easiest to understand using the polar form. When
multiplying two complex numbers, their absolute values are multiplies, while
their arguments are added. In other words,

(r1 cisϕ1) ∗ (r2 cisϕ2) = (r1r2) cis(ϕ1 + ϕ2).

In the illustration below, | #»v ∗ #»w| = | #»v || #»w| and the angle between the
x-axis and #»v is the same as the angle between #»w and #»v ∗ #»w.

#»v
#»w

#»v ∗ #»w
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Remarkably, multiplication is also very simple to compute from the co-
ordinates: it works a bit like polynomial multiplication, except that we
transform i2 into −1.

(a+ bi) ∗ (c+ di) = ac+ a(di) + (bi)c+ (bi)(di)

= ac+ adi+ bci+ (bd)i2

= ac+ (ad+ bc)i+ (bd)(−1)

= (ac− bd) + (ad+ bc)i

Exercise 1

Prove that (r1 cisϕ1) ∗ (r2 cisϕ2) = (r1r2) cis(ϕ1 +ϕ2) using this new
definition of product.

[Go to solution]

Another way to explain complex multiplication is to say that multiplying
a number by r cisϕ will scale it by r and rotate it by ϕ counterclockwise.
For example, multiplying a number by 1

2 i = 1
2 cis π2 will divide its length by

2 and rotate it 90◦ counterclockwise.

ϕ

ϕ+ π
2

#»v#»v ∗ 1
2 i

2.1.2 Point representation

In this section we explain how to implement the point structure that we will
use throughout the rest of the book. The code is only available in C++ at
the moment, but should be easy to translate in most languages.

With a custom structure

Let us first declare the basic operations: addition, subtraction, and multi-
plication/division by a scalar.

typedef double T;
struct pt {
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T x,y;
pt operator+(pt p) {return {x+p.x, y+p.y};}
pt operator-(pt p) {return {x-p.x, y-p.y};}
pt operator*(T d) {return {x*d, y*d};}
pt operator/(T d) {return {x/d, y/d};} // only for floating-

point
};

For generality, we declare type T: the type of the the coordinates. Generally,
either double or long long (for exact computations with integers) is appro-
priate. long double can also be very useful if extra precision is required.
The cases where integers cannot be used are often quite clear (e.g. division
by scalar, rotation by arbitrary angle).

We define some comparators for convenience:

bool operator==(pt a, pt b) {return a.x == b.x && a.y == b.y;}
bool operator!=(pt a, pt b) {return !(a == b);}

Note that there is no obvious way to define a < operator on 2D points, so
we will only define it as needed.

Here are some functions linked to the absolute value:

T sq(pt p) {return p.x*p.x + p.y*p.y;}
double abs(pt p) {return sqrt(sq(p));}

The squared absolute value sq() can be used to compute and compare dis-
tances quickly and exactly if the coordinates are integers. We use double
for abs() because it will return floating-point values even for integer co-
ordinates (if you are using long double you should probably change it to
long double).

We also declare a way to print out points, for debugging purposes:

ostream& operator<<(ostream& os, pt p) {
return os << "("<< p.x << "," << p.y << ")";

}

Some example usage:

pt a{3,4}, b{2,-1};
cout << a+b << " " << a-b << "\n"; // (5,3) (1,5)
cout << a*-1 << " " << b/2 << "\n"; // (-3,-4) (1.5,2)

We also define a signum function, which will be useful for several appli-
cations. It returns -1 for negative numbers, 0 for zero, and 1 for positive
numbers.
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template <typename T> int sgn(T x) {
return (T(0) < x) - (x < T(0));

}

With the C++ complex structure

Using the complex type in C++ can be a very practical choice in contests
such as ACM-ICPC where everything must be typed from scratch, as many
of the operations we need are already implemented and ready to use.

The code below defines a pt with similar functionality.

typedef double T;
typedef complex<T> pt;
#define x real()
#define y imag()

Warning

As with the custom structure, you should choose the appropriate
coordinate type for T. However, be warned that if you define it as
an integral type like long long, some functions which should always
return floating-point numbers (like abs() and arg()) will be truncated
to integers.

The macros x and y are shortcuts for accessing the real and imaginary
parts of a number, which are used as x- and y-coordinates:

pt p{3,-4};
cout << p.x << " " << p.y << "\n"; // 3 -4
// Can be printed out of the box
cout << p << "\n"; // (3,-4)

Note that the coordinates can’t be modified individually:

pt p{-3,2};
p.x = 1; // doesn’t compile
p = {1,2}; // correct

We can perform all the operations that we have with the custom struc-
ture and then some more. Of course, we can also use complex multiplication
and division. Note however that we can only multiply/divide by scalars of
type T (so if T is double, then int will not work).

pt a{3,1}, b{1,-2};
a += 2.0*b; // a = (5,-3)
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cout << a*b << " " << a/-b << "\n"; // (-1,-13) (-2.2,-1.4)

There are also useful methods for dealing with polar coordinates:

pt p{4,3};
// Get the absolute value and argument of point (in [-pi,pi])
cout << abs(p) << " " << arg(p) << "\n"; // 5 0.643501
// Make a point from polar coordinates
cout << polar(2.0, -M_PI/2) << "\n"; // (1.41421,-1.41421)

Warning

The complex library provides function norm, which is mostly equivalent
to the sq that we defined earlier. However, it is not guaranteed to be
exact for double: for example, the following expression evaluates to
false.

norm(complex<double>(2.0,1.0)) == 5.0

Therefore, to be safe you should implement a separate sq() function
as for the custom structure (or you can wait use function dot() that
we will define later).

2.2 Transformations

In this section we will show how to implement three transformations of
the plane, in increasing difficulty. We will see that they all correspond to
linear transformations on complex numbers, that is, functions of the form
f(p) = a ∗ p + b for a, b, p ∈ C, and deduce a way to compute a general
transformation that combines all three.

2.2.1 Translation

To translate an object by a vector #»v , we simply need to add #»v to every
point in the object. The corresponding function is f(p) = p+ #»v with #»v ∈ C.

#»v
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The implementation is self-explanatory:

pt translate(pt v, pt p) {return p+v;}

2.2.2 Scaling

To scale an object by a certain ratio α around a center c, we need to shorten
or lengthen the vector from c to every point by a factor α, while conserving
the direction. The corresponding function is f(p) = c+α(p− c) (α is a real
here, so this is a scalar multiplication).

c

Again, the implementation is just a translation of the expression into
code:

pt scale(pt c, double factor, pt p) {
return c + (p-c)*factor;

}

2.2.3 Rotation

To rotate an object by a certain angle ϕ around center c, we need to rotate
the vector from c to every point by ϕ. From our study of polar coordinates in
2.1.1 we know this is equivalent to multiplying by cisϕ, so the corresponding
function is f(p) = c+ cisϕ ∗ (p− c).

ϕ

ϕ

c

In particular, we will often use the (counter-clockwise) rotation centered
on the origin. We use complex multiplication to figure out the formula:

(x+ yi) ∗ cisϕ = (x+ yi) ∗ (cosϕ+ i sinϕ)

= (x cosϕ− y sinϕ) + (x sinϕ+ y cosϕ)i

which gives the following implementation:
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pt rot(pt p, double a) {
return {p.x*cos(a) - p.y*sin(a), p.x*sin(a) + p.y*cos(a)};

}

which if using complex can be simplified to just

pt rot(pt p, double a) {return p * polar(1.0, a);}

And among those, we will use the rotation by 90◦ quite often:

(x+ yi) ∗ cis(90◦) = (x+ yi) ∗ (cos(90◦) + i sin(90◦))

= (x+ yi) ∗ i = −y + xi

It works fine with integer coordinates, which is very useful:

pt perp(pt p) {return {-p.y, p.x};}

2.2.4 General linear transformation

It is easy to check that all those transformations are of the form f(p) =
a∗p+b as claimed in the beginning of this section. In fact, all transformations
of this type can be obtained as combinations of translations, scalings and
rotations.1

Just like for real numbers, to determine a linear transformation such as
this one, we only need to know the image of two points to know the complete
function. Indeed, if we know f(p) = a ∗ p+ b and f(q) = a ∗ q + b, then we

can find a as f(q)−f(p)
q−p , and then b as f(p)− a ∗ p.

And thus if we want to know a new point f(r) of that transformation,
we can then compute it as:

f(r) = f(p) + (r − p) ∗ f(q)− f(p)

q − p

p q

r
f(p)

f(q)
f(r)

This is easy to implement using complex:

1Actually, if a = 1 it is just a translation, and if a 6= 1 it is the combination of a scaling
and a rotation combination from a well-chosen center.
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pt linearTransfo(pt p, pt q, pt r, pt fp, pt fq) {
return fp + (r-p) * (fq-fp) / (q-p);

}

Otherwise, you can use the cryptic but surprisingly short solution from
[2] (see the next sections for dot() and cross()):

pt linearTransfo(pt p, pt q, pt r, pt fp, pt fq) {
pt pq = q-p, num{cross(pq, fq-fp), dot(pq, fq-fp)};
return fp + pt{cross(r-p, num), dot(r-p, num)} / sq(pq);

}

2.3 Products and angles

Besides complex multiplication, which is nice to have but is not useful so of-
ten, there are two products involving vectors that are of critical importance:
dot product and cross product. In this section, we’ll look at their definition,
properties and some basic use cases.

2.3.1 Dot product

The dot product #»v · #»w of two vectors #»v and #»w can be seen as a measure of
how similar their directions are. It is defined as

#»v · #»w = ‖ #»v ‖‖ #»w‖ cos θ

where ‖ #»v ‖ and ‖ #»w‖ are the lengths of the vectors and θ is amplitude of the
angle between #»v and #»w.

Since cos(−θ) = cos(θ), the sign of the angle does not matter, and the
dot product is symmetric: #»v · #»w = #»w · #»v .

In general we will take θ in [0, π], so that dot product is positive if
θ < π/2, negative if θ > π/2, and zero if θ = π/2, that is, if #»v and #»w are
perpendicular.

#»v
θ

#»w

#»v

θ
#»w

#»v

θ
#»w

θ < π/2 θ = π/2 θ > π/2
#»v · #»w = 5 #»v · #»w = 0 #»v · #»w = −5
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If we fix ‖ #»v ‖ and ‖ #»w‖ as above, the dot product is maximal when the
vectors point in the same direction, because cos θ = cos(0) = 1, and minimal
when they point in opposite directions, because cos θ = cos(π) = −1.

Math insight

Because of the definition of cosine in right triangles, dot prod-
uct can be interpreted in an interesting way (assuming #»v 6= 0):
#»v · #»w = ‖ #»v ‖π #»v ( #»w) where π #»v ( #»w) := ‖ #»w‖ cos θ is the signed length
of the projection of #»w onto the line that contains #»v (see examples be-
low). In particular, this means that the dot product does not change
if one of the vectors moves perpendicular to the other.

#»v

θ

#»w

π#»v (
#»w) #»vθ

#»w

π#»v (
#»w)

π #»v (
#»w) = 1.58 π #»v (

#»w) = −1.26

Remarkably, the dot product can be computed by a very simple expres-
sion: if #»v = (vx, vy) and #»w = (wx, wy), then #»v · #»w = vxwx + vywy. We can
implement it like this:

T dot(pt v, pt w) {return v.x*w.x + v.y*w.y;}

Dot product is often used for testing if two vectors are perpendicular,
since we just need to test whether #»v · #»w = 0:

bool isPerp(pt v, pt w) {return dot(v,w) == 0;}

It can also be used for finding the angle between two vectors, in [0, π].
Because of precision errors, we need to be careful not to call acos with a
value that is out of the allowable range [−1, 1].

double angle(pt v, pt w) {
double cosTheta = dot(v,w) / abs(v) / abs(w);
return acos(max(-1.0, min(1.0, cosTheta)));

}

Since C++17, this can be simplified to:

double angle(pt v, pt w) {
return acos(clamp(dot(v,w) / abs(v) / abs(w), -1.0, 1.0));

}
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2.3.2 Cross product

The cross product #»v × #»w of two vectors #»v and #»w can be seen as a measure
of how perpendicular they are. It is defined in 2D as

#»v × #»w = ‖ #»v ‖‖ #»w‖ sin θ

where ‖ #»v ‖ and ‖ #»w‖ are the lengths of the vectors and θ is amplitude of the
oriented angle from #»v to #»w.

Since sin(−θ) = − sin(θ), the sign of the angle matters, the cross product
changes sign when the vectors are swapped: #»w× #»v = − #»v × #»w. It is positive
if #»w is “to the left” of #»v , and negative is #»w is “to the right” of #»v .

#»v

“to the left”

“to the right”

In general, we take θ in (−π, π], so that the dot product is positive if
0 < θ < π, negative if −π < θ < 0 and zero if θ = 0 or θ = π, that is, if #»v
and #»w are aligned.

#»v

#»w
θ

#»v

#»w

θ

#»v

#»w
θ

0 < θ < π θ = π −π < θ < 0
#»v × #»w = 5 #»v × #»w = 0 #»v × #»w = −7

If we fix ‖ #»v ‖ and ‖ #»w‖ as above, the cross product is maximal when the
vectors are perpendicular with #»w on the left, because sin θ = sin(π/2) = 1,
and minimal when they are perpendicular with #»w on the right, because
sin θ = sin(−π/2) = −1.
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Math insight

Because of the definition of sine in right triangles, cross product can
also be interpreted in an interesting way (assuming v 6= 0): #»v × #»w =
‖ #»v ‖d #»v ( #»w), where d #»v ( #»w) = ‖ #»w‖ sin θ is the signed distance from the
line that contains #»v , with positive values on the left side of #»v . In
particular, this means that the cross product doesn’t change if one of
the vectors moves parallel to the other.

#»v
θ#»w

d #»v ( #»w)

#»v

θ
#»w

d #»v ( #»w)

d #»v (
#»w) = 2.69 d #»v (

#»w) = −2.37

Like dot product, cross product has a very simple expression in cartesian
coordinates: if #»v = (vx, vy) and #»w = (wx, wy), then #»v × #»w = vxwy − vywx:

T cross(pt v, pt w) {return v.x*w.y - v.y*w.x;}

Implementation trick

When using complex, we can implement both dot() and cross() with
this trick, which is admittedly quite cryptic, but requires less typing
and is less prone to typos:

T dot(pt v, pt w) {return (conj(v)*w).x;}
T cross(pt v, pt w) {return (conj(v)*w).y;}

Here conj() is the complex conjugate: the conjugate of a complex
number a+ bi is defined as a− bi. To verify that the implementation
is correct, we can compute conj(v)*w as

(vx − vyi) ∗ (wx + wyi) = (vxwx + vywy) + (vxwy − vywx)i

and see that the real and imaginary parts are indeed the dot product
and the cross product.
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Orientation

One of the main uses of cross product is in determining the relative position
of points and other objects. For this, we define the function orient(A,B,C) =
#    »

AB × #    »

AC. It is positive if C is on the left side of
#    »

AB, negative on the right
side, and zero if C is on the line containing

#    »

AB. It is straightforward to
implement:

T orient(pt a, pt b, pt c) {return cross(b-a,c-a);}

In other words, orient(A,B,C) is positive if when going from A to B to
C we turn left, negative if we turn right, and zero if A,B,C are collinear.

A

B

C

A
B

C
A

B

C

left turn collinear right turn

orient(A,B,C) > 0 orient(A,B,C) = 0 orient(A,B,C) < 0

Its value is conserved by cyclic rotation, that is

orient(A,B,C) = orient(B,C,A) = orient(C,A,B)

while swapping any two arguments switches the sign.

As an example of use, suppose we want to check if point P lies in the
angle formed by lines AB and AC. We can follow this procedure:

1. check that orient(A,B,C) 6= 0 (otherwise the question is invalid);

2. if orient(A,B,C) < 0, swap B and C;

A
B

C

A
C

B

orient(A,B,C) > 0 orient(A,B,C) < 0

no swap swap

3. P is in the angle iff orient(A,B, P ) ≥ 0 and orient(A,C, P ) ≤ 0.
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A
B

C
P

A
B

C

P A
B

C
P

orient(A,B, P ) ≥ 0 orient(A,B, P ) < 0 orient(A,B, P ) ≥ 0

orient(A,C, P ) > 0 orient(A,C, P ) ≤ 0 orient(A,C, P ) ≤ 0

KO KO OK

bool inAngle(pt a, pt b, pt c, pt p) {
assert(orient(a,b,c) != 0);
if (orient(a,b,c) < 0) swap(b,c);
return orient(a,b,p) >= 0 && orient(a,c,p) <= 0;

}

Using orient() we can also easily compute the amplitude of an oriented

angle B̂AC, that is, the angle that is covered if we turn from B to C around
A counterclockwise.

There are two cases: either orient(A,B,C) ≥ 0, with an angle in [0, π],
or orient(A,B,C) < 0, with an angle in (π, 2π). In the first case, we can
simply use the angle() function we create based on the dot product; in the
second case, we should take “the other side”, so 2π minus that result.

B

A

C
B

A

C

orient(A,B,C) > 0 orient(A,B,C) < 0

angle() = 50◦ angle() = 80◦

orientedAngle() = 50◦ orientedAngle() = 280◦

double orientedAngle(pt a, pt b, pt c) {
if (orient(a,b,c) >= 0)

return angle(b-a, c-a);
else

return 2*M_PI - angle(b-a, c-a);
}
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Yet another use case is checking if a polygon P1 · · ·Pn is convex: we com-
pute the n orientations of three consecutive vertices orient(Pi, Pi+1, Pi+2),
wrapping around from n to 1 when necessary. The polygon is convex if they
are all ≥ 0 or all ≤ 0, depending on the order in which the vertices are given.

different signs all the same sign

⇒ not convex ⇒ convex

bool isConvex(vector<pt> p) {
bool hasPos=false, hasNeg=false;
for (int i=0, n=p.size(); i<n; i++) {

int o = orient(p[i], p[(i+1)%n], p[(i+2)%n]);
if (o > 0) hasPos = true;
if (o < 0) hasNeg = true;

}
return !(hasPos && hasNeg);

}

Polar sort

Because it can determine whether a vector points to the left or right of
another, a common use of cross product is to sort vectors by direction.
This is called polar sort: points are sorted in the order that a rotating ray
emanating from the origin would touch them. Here, we will try to use cross
product to safely sort the points by their arguments in (−π, π], that is the
order that would be given by the arg() function for complex.2

2Sorting by using the arg() value would likely be a bad idea: there is no guarantee (that
I know of) that vectors which are multiples of each other will have the same argument,
because of precision issues. However, I haven’t been to find an example where it fails for
values small enough to be handled exactly with long long.
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#»v0
#»v1

#»v2

#»v3

#»v4
#»v5

#»v6

In general #»v should go before #»w when #»v × #»w > 0, because that means
#»w is to the left of #»v when looking from the origin. This test works well for
directions that are sufficiently close: for example, #»v2 × #»v3 > 0. But when
they are more than 180◦ apart in the order, it stops working: for example
#»v1 × #»v5 < 0. So we first need to split the points in two halves according to
their argument:

#»v0

#»v1

#»v2

#»v3

#»v4
#»v5

#»v6

If we isolate the points with argument in (0, π] (region highlighted in
blue) from those with argument in (−π, 0], then the cross product always
gives the correct order. This gives the following algorithm:

bool half(pt p) { // true if in blue half
assert(p.x != 0 || p.y != 0); // the argument of (0,0) is

undefined
return p.y > 0 || (p.y == 0 && p.x < 0);

}
void polarSort(vector<pt> &v) {

sort(v.begin(), v.end(), [](pt v, pt w) {
return make_tuple(half(v), 0) <

make_tuple(half(w), cross(v,w));
});

}

Indeed, the comparator will return true if either #»w is in the blue region and
#»v is not, or if they are in the same region and #»v × #»w > 0.

We can extend this algorithm in three ways:
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• Right now, points that are in the exact same direction are considered
equal, and thus will be sorted arbitrarily. If we want, we can use their
magnitude as a tie breaker:

void polarSort(vector<pt> &v) {
sort(v.begin(), v.end(), [](pt v, pt w) {

return make_tuple(half(v), 0, sq(v)) <
make_tuple(half(w), cross(v,w), sq(w));

});
}

With this tweak, if two points are in the same direction, the point that
is further from the origin will appear later.

• We can perform a polar sort around some point O other than the
origin: we just have to subtract that point O from the vectors #»v and
#»w when comparing them. This as if we translated the whole plane so
that O is moved to (0, 0):

void polarSortAround(pt o, vector<pt> &v) {
sort(v.begin(), v.end(), [](pt v, pt w) {

return make_tuple(half(v-o), 0)) <
make_tuple(half(w-o), cross(v-o, w-o));

});
}

• Finally, the starting angle of the ordering can be modified easily by
tweaking function half(). For example, if we want some vector #»v to
be the first angle in the polar sort, we can write:

pt v = {/* whatever you want except 0,0 */};
bool half(pt p) {

return cross(v,p) < 0 || (cross(v,p) == 0 && dot(v,p) <
0);

}

This places the blue region like this:

#»v
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2.4 Lines

In this section we will discuss how to represent lines and a wide variety of
applications.

2.4.1 Line representation

Lines are sets of points (x, y) in the plane which obey an equation of the
form ax + by = c, with at least one of a and b nonzero. a and b determine
the direction of the line, while c determines its position.

ax
+ by

= cax
+ by

= c+
1

ax
+ by

= c+
2

ax
+ by

= c− 1

ax
+ by

= c− 2

Equation ax+by = c can be interpreted geometrically through dot prod-
uct: if we consider (a, b) as a vector, then the equation becomes (a, b) · (x, y) =
c. This vector is perpendicular to the line, which makes sense: we saw in
2.3.1 that the dot product remains constant when the second vector moves
perpendicular to the first.

ax
+ by

= c

(a, b)

The way we’ll represent lines in code is based on another interpretation.
Let’s take vector (b,−a), which is parallel to the line. Then the equation
becomes a cross product (b,−a) × (x, y) = c. Indeed, we saw in 2.3.2 that
the cross product remains constant when the second vector moves parallel
to the first.
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P

Q

ax
+ by

= c

#»v = (b,
−a)

In this way, finding the equation of a line going through two points P
and Q is easy: define the direction vector #»v = (b,−a) =

#    »

PQ, then find c as
#»v × P .

struct line {
pt v; T c;
// From direction vector v and offset c
line(pt v, T c) : v(v), c(c) {}
// From equation ax+by=c
line(T a, T b, T c) : v({b,-a}), c(c) {}
// From points P and Q
line(pt p, pt q) : v(q-p), c(cross(v,p)) {}

// Will be defined later:
// - these work with T = int
T side(pt p);
double dist(pt p);
line perpThrough(pt p);
bool cmpProj(pt p, pt q);
line translate(pt t);
// - these require T = double
void shiftLeft(double dist);
pt proj(pt p);
pt refl(pt p);

}

A line will always have some implicit orientation, with two sides: the
“positive side” of the line (ax + by − c > 0) is on the left of #»v , while the
“negative side” (ax+by−c < 0) is on the right of #»v . In our implementation,
this orientation is determined by the points that were used to create the line.
We will represent it by an arrow at the end of the line. The figure below
shows the differences that occur when creating a line as line(p,q) or line(
q,p).
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P

Q

“positive side”

ax+ by − c > 0

“negative side”

ax+ by − c < 0

P

Q

“positive side”

ax+ by − c > 0

“negative side”

ax+ by − c < 0

created as line(p,q) created as line(q,p)
#»v =

#    »

PQ #»v =
#    »

QP

2.4.2 Side and distance

One interesting operation on lines is to find the value of ax + by − c for
a given point (x, y). For line l and point P = (x, y), we will denote this
operation as

sidel(P ) := ax+ by − c = #»v × P − c.

As we saw above, it can be used to determine which side of the line a
certain point is, and sidel(P ) = 0 if and only if P is on l (we will use this
property a few times). You may notice that sidePQ(R) is actually equal to
orient(P,Q,R).

sid
el(

P )
= 0

“positive side”

sidel(P ) > 0

“negative side”

sidel(P ) < 0

T side(pt p) {return cross(v,p)-c;}

The sidel(P ) operation also gives the distance to l, up to a constant
factor: the bigger sidel(P ) is, the further from line l. In fact, we can prove
that | sidel(P )| is ‖v‖ times the distance between P and l (this should make
sense if you’ve read the “mathy insight” in section 2.3.2).
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A

B

distl(A)
distl(B)

This gives an easy implementation of distance:

double dist(pt p) {return abs(side(p)) / abs(v);}

The squared distance can be useful to check if a point is within a certain
integer distance of a line, because when using integers the result is exact if
it is an integer.

double sqDist(pt p) {return side(p)*side(p) / (double)sq(v);}

2.4.3 Perpendicular through a point

Two lines are perpendicular if and only if their direction vectors are per-
pendicular. Let’s say we have a line l of direction vector #»v . To find a line
perpendicular to line l and which goes through a certain point P , we could
define its direction vector as perp( #»v ) (that is, #»v rotated by 90◦ counter-
clockwise, see section 2.2.3) and then try to work out c. However, it’s simpler
to just compute it as the line from P to P + perp( #»v ).

l

#»v

perp( #»v )
P

P + perp( #»v )

line perpThrough(pt p) {return {p, p + perp(v)};}
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2.4.4 Sorting along a line

One subtask that often needs to be done in geometry problems is, given
points on a line l, to sort them in the order they appear on the line, following
the direction of #»v .

0

1
2

3

4
#»v

We can use the dot product to figure out the order of two points: a point
A comes before a point B if #»v ·A < #»v ·B. So we can a comparator out of
it.

bool cmpProj(pt p, pt q) {
return dot(v,p) < dot(v,q);

}

In fact, this comparator is more powerful than we need: it is not limited to
points on l and can compare two points by their orthogonal projection3 on l.
This should make sense if you have read the “mathy insight” in section 2.3.1.

2.4.5 Translating a line

If we want to translate a line l by vector
#»
t , the direction vector #»v remains

the same but we have to adapt c.

#»
t

l

ax
+ by

= c

l′

ax
+ by

= c
′

P

P +
#»
t

To find its new value c′, we can see that for some point P on l, then
P +

#»
t must be on the translated line. So we have

sidel(P ) = #»v × P − c = 0

sidel′
(
P +

#»
t
)

= #»v ×
(
P +

#»
t
)
− c′ = 0

3If you don’t know what an orthogonal projection is, read section 2.4.7.
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which allows us to find c′:

c′ = #»v × (P +
#»
t ) = #»v × P + #»v × #»

t = c+ #»v × #»
t

line translate(pt t) {return {v, c + cross(v,t)};}

A closely related task is shifting line l to the left by a certain distance δ
(or to the right by −δ).

l

ax
+ b
y =

c

l′

ax
+ b
y =

c
′

δ

This is equivalent to translating by a vector of norm δ perpendicular to
the line, which we can compute as

#»
t = (δ/‖ #»v ‖) perp( #»v )

so in this case c′ becomes

c′ = c+ #»v × #»
t

= c+ (δ/‖ #»v ‖)( #»v × perp( #»v ))

= c+ (δ/‖ #»v ‖)‖ #»v ‖2
= c+ δ‖ #»v ‖

line shiftLeft(double dist) {return {v, c + dist*abs(v)};}

2.4.6 Line intersection

There is a unique intersection point between two lines l1 and l2 if and only
if # »vl1 × # »vl2 6= 0. If it exists, we will show that it is equal to

P =
cl1

# »vl2 − cl2 # »vl1
# »vl1 × # »vl2

l1

l2

P
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We only show that it lies on l1 (it should be easy to see that the expression
is actually symmetric in l1 and l2). It suffices to see that sidel1(P ) = 0:

sidel1(P ) = # »vl1 ×
(
cl1

# »vl2 − cl2 # »vl1
# »vl1 × # »vl2

)
− cl1

=
cl1( # »vl1 × # »vl2)− cl2( # »vl1 × # »vl1)− cl1( # »vl1 × # »vl2)

# »vl1 × # »vl2

=
−cl2( # »vl1 × # »vl1)

# »vl1 × # »vl2
= 0

bool inter(line l1, line l2, pt &out) {
T d = cross(l1.v, l2.v);
if (d == 0) return false;
out = (l2.v*l1.c - l1.v*l2.c) / d; // requires floating-point

coordinates
return true;

}

2.4.7 Orthogonal projection and reflection

The orthogonal projection of a point P on a line l is the point on l that is
closest to P . The reflection of point P by line l is the point on the other side
of l that is at the same distance and has the same orthogonal projection.

P

P ′
l

P

P ′

l

projection reflection

To compute the orthogonal projection of P , we need to move P perpen-
dicularly to l until it is on the line. In other words, we need to find the
factor k such that sidel(P + k perp( #»v )) = 0.

We compute

sidel(P + k perp( #»v )) = #»v × (P + k perp( #»v ))− c
= #»v × P + #»v × k perp( #»v )− c
= ( #»v × P − c) + k( #»v × perp( #»v ))

= sidel(P ) + k‖ #»v ‖2
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so we find k = − sidel(P )/‖ #»v ‖2.

pt proj(pt p) {return p - perp(v)*side(p)/sq(v);}

To find the reflection, we need to move P in the same direction but twice
the distance:

pt refl(pt p) {return p - perp(v)*2*side(p)/sq(v);}

2.4.8 Angle bisectors

An angle bisector of two (non-parallel) lines l1 and l2 is a line that forms
equal angles with l1 and l2. We define the internal bisector lint(l1, l2) as the
line whose direction vector points between the direction vectors of l1 and l2,
and the external bisector lext(l1, l2) as the other one. They are shown in the
figure below.

l1

l2

lint(l1, l2)

lext(l1, l2)

An important property of bisectors is that their points are at equal dis-
tances from the original lines l1 and l2. In fact, if we give a sign to the
distance depending on which side of the line we are on, we can say that
lint(l1, l2) is the line whose points are at opposite distances from l1 and l2
while lext(l1, l2) is the line whose points are at equal distances from l1 and
l2.

For some line l can compute this signed distance as sidel(P )/‖ #»v ‖ (in
section 2.4.2 we used the absolute value of this to compute the distance).
So lint(l1, l2) should be the line of all points for which

sidel1(P )

‖ # »vl1‖
= −sidel2(P )

‖ # »vl2‖

⇔
# »vl1 × P − cl1
‖ # »vl1‖

= −
# »vl2 × P − cl2
‖ # »vl2‖

⇔
(

# »vl1
‖ # »vl1‖

+
# »vl2
‖ # »vl2‖

)
× P −

(
cl1
‖ # »vl1‖

+
cl2
‖ # »vl2‖

)
= 0
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This is exactly an expression of the form sidel(P ) = #»v ×P −c = 0 which
defines the points on a line. So it means that we have found the #»v and c
that characterize lint(l1, l2):

#»v =
# »vl1
‖ # »vl1‖

+
# »vl2
‖ # »vl2‖

c =
cl1
‖ # »vl1‖

+
cl2
‖ # »vl2‖

The reasoning is very similar for lext(l1, l2), the only difference being
signs. Both can be implemented as follows.

line bisector(line l1, line l2, bool interior) {
assert(cross(l1.v, l2.v) != 0); // l1 and l2 cannot be parallel!
double sign = interior ? 1 : -1;
return {l2.v/abs(l2.v) + l1.v/abs(l1.v) * sign,

l2.c/abs(l2.v) + l1.c/abs(l1.v) * sign};
}

2.5 Segments

In this section we will discuss how to compute intersections and distances
involving line segments.

2.5.1 Point on segment

As an introduction, let’s first see how to check if a point P lies on segment
[AB].

For this we will first define a useful subroutine inDisk() that checks if
a point P lies on the disk of diameter [AB]. We know that the points on a
disk are those which form angles ≥ 90◦ with the endpoints of a diameter.
This can easily be checked by using dot product: ÂPB ≥ 90◦ is equivalent
#    »

PA · #    »

PB ≤ 0 (with the exception of P = A,B in which case angle ÂPB is
undefined).
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A B

P

A B

P

#    »

PA · #    »

PB ≤ 0
#    »

PA · #    »

PB > 0

in disk out of disk

bool inDisk(pt a, pt b, pt p) {
return dot(a-p, b-p) <= 0;

}

Math insight

In fact, we can notice that
#    »

PA · #    »

PB is equal to the power of point P
with respect to the circle of diameter [AB]: if O is the center of that
circle and r its radius, then

#    »

PA · #    »

PB = |OP |2 − r2. This makes it
perfect for our purpose.

With this subroutine in hand, it is easy to check whether P is on segment
[AB]: this is the case if and only if P is on line AB and also on the disk
whose diameter is AB (and thus is in the part the line between A and B).

A
B

intersection of line and disk = segment

bool onSegment(pt a, pt b, pt p) {
return orient(a,b,p) == 0 && inDisk(a,b,p);

}

2.5.2 Segment-segment intersection

Finding the precise intersection between two segments [AB] and [CD] is
quite tricky: many configurations are possible and the intersection itself
might be empty, a single point or a whole segment.
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To simplify things, we will separate the problem in two distinct cases:

1. Segments [AB] and [CD] intersect properly, that is, their intersection
is one single point which is not an endpoint of either segment. This is
easy to test with orient().

2. In all other cases, the intersection, if it exists, is determined by the
endpoints. If it is a single point, it must be one of A,B,C,D, and if
it is a whole segment, it will necessarily start and end with points in
A,B,C,D.

Let’s deal with the first case: there is a single proper intersection point
I. To test this, it suffices to test that A and B are on either side of line CD,
and that C and D are on either side of line AB. If the test is positive, we
find I as a weighted average of A and B.4

A

C
B

D

proper intersection

bool properInter(pt a, pt b, pt c, pt d, pt &out) {
double oa = orient(c,d,a),

ob = orient(c,d,b),
oc = orient(a,b,c),
od = orient(a,b,d);

// Proper intersection exists iff opposite signs
if (oa*ob < 0 && oc*od < 0) {

out = (a*ob - b*oa) / (ob-oa);
return true;

}
return false;

}

Then to deal with the second case, we will test for every point among
A,B,C,D if it is on the other segment. If it is, we add it to a set S. Clearly,
an endpoint cannot be in the middle of the intersection segment, so S will
always contain 0, 1 or 2 distinct points, describing an empty intersection, a
single intersection point or an intersection segment.

4We can understand the formula as the center of gravity of point A with weight |oB | and
point B with weight |oA|, which gives us a point I on [AB] such that |IA|/|IB| = oA/oB .

55



A

B

C
D

A

B

C

D
A

B

C

D

S = ∅ S = {A} S = {B,C}
no intersection intersection point intersection segment

// To create sets of points we need a comparison function
struct cmpX {

bool operator()(pt a, pt b) {
return make_pair(a.x, a.y) < make_pair(b.x, b.y);

}
};

set<pt,cmpX> inters(pt a, pt b, pt c, pt d) {
pt out;
if (properInter(a,b,c,d,out)) return {out};
set<pt,cmpX> s;
if (onSegment(c,d,a)) s.insert(a);
if (onSegment(c,d,b)) s.insert(b);
if (onSegment(a,b,c)) s.insert(c);
if (onSegment(a,b,d)) s.insert(d);
return s;

}

2.5.3 Segment-point distance

To find the distance between segment [AB] and point P , there are two cases:
either the closest point to P on [AB] is strictly between A and B, or it is
one of the endpoints (A or B). The first case happens when the orthogonal
projection of P onto AB is between A and B.

A
B

P

A
B

P

A
B

P

closest to A closest to projection closest to B
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To check this, we can use the cmpProj() method in line.

double segPoint(pt a, pt b, pt p) {
if (a != b) {

line l(a,b);
if (l.cmpProj(a,p) && l.cmpProj(p,b)) // if closest to

projection
return l.dist(p); // output distance to

line
}
return min(abs(p-a), abs(p-b)); // otherwise distance to A or B

}

2.5.4 Segment-segment distance

We can find the distance between two segments [AB] and [CD] based on
the segment-point distance if we separate into the same two cases as for
segment-segment intersection:

1. Segments [AB] and [CD] intersect properly, in which case the distance
is of course 0.

2. In all other cases, the shortest distance between the segments is at-
tained in at least one of the endpoints, so we only need to test the four
endpoints and report the minimum.

This can be readily implemented with the functions at our disposal.

double segSeg(pt a, pt b, pt c, pt d) {
pt dummy;
if (properInter(a,b,c,d,dummy))

return 0;
return min({segPoint(a,b,c), segPoint(a,b,d),

segPoint(c,d,a), segPoint(c,d,b)});
}

Some possible cases are illustrated below.

A

C
B

D

A

C

B
D

A

C

B D

proper intersection between points between point and
line
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2.6 Polygons

In this section we will discuss basic tasks on polygons: how to find their
area and two ways to detect if a point is inside or outside them.

2.6.1 Polygon area

To compute the area of a polygon, it is useful to first consider the area of a
triangle ABC.

A

B

C

θ

We know that the area of this triangle is 1
2 |AB||AC| sin θ, because |AC| sin θ

is the length of the height coming down from C. This looks a lot like the
definition of cross product: in fact,

1

2
|AB||AC| sin θ =

1

2

∣∣∣ #    »

AC × #    »

AC
∣∣∣

Since O is the origin, it can be implemented simply like this:

double areaTriangle(pt a, pt b, pt c) {
return abs(cross(b-a, c-a)) / 2.0;

}

Now that we can compute the area of a triangle, the intuitive way to
find the area of a polygon would be to

1. divide the polygon into triangles;

2. add up all the areas.

However, it turns out that reliably dividing a polygon into triangles is a
difficult problem in itself. So instead we’ll add and subtract triangle areas
in a clever way. Let’s take this quadrilateral as an example:

A B

CD
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Let’s take an arbitrary reference point O. Let’s consider the vertices of
ABCD in order, and for every pair of consecutive points P1, P2, we’ll add
the area of OP1P2 to the total if

#       »

P1P2 goes counter-clockwise around O, and
subtract it otherwise. Additions are marked in blue and subtractions in red.

We can see that this will indeed compute the area of quadrilateral
ABCD. In fact, it works for any polygon (draw a few more examples to
convince yourself).

Note that the sign (add or subtract) that we take for the area of OP1P2

is exactly the sign that the cross product takes. If we take the origin as
reference point O, it gives this simple implementation:

double areaPolygon(vector<pt> p) {
double area = 0.0;
for (int i = 0, n = p.size(); i < n; i++) {

area += cross(p[i], p[(i+1)%n]); // wrap back to 0 if i == n
-1

}
return abs(area) / 2.0;

}

We have to take the absolute value in case the vertices are given in clockwise
order. In fact, testing the sign of area is a good way to know whether the
vertices are in counter-clockwise (positive) or clockwise (negative) order. It
is good practice to always put your polygons in counter-clockwise order,
by reversing the array of vertices if necessary, because some algorithms on
polygons use this property.

2.6.2 Cutting-ray test

Let’s say we want to test if a point A is inside a polygon P1 · · ·Pn. Then
one way to do it is to draw an imaginary ray from A that extends to infinity,
and check how many times this ray intersects P1 · · ·Pn. If the number of
intersections is odd, A is inside, and if it is even, A is outside.
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A1

A2

3 inters ⇒ A1 inside 2 inters ⇒ A2 outside

However, sometimes this can go wrong if the ray touches a vertex of the
polygon, as below. The ray from A3 intersects the polygon twice, but A3

is inside. We can try to solve the issue by counting one intersection per
segment touched, which would give three intersections for A3, but then the
ray from A4 will intersect the polygon twice even though A4 is inside.

A3

A4

So we need to be more careful in defining what counts as an intersection.
We will split the plane into two halves along the ray: the points lower than
A, and the points at least as high (blue region). We then say that a segment
[PiPi+1] crosses the ray right of A if it touches it and Pi and Pi+1 are on
opposite halves.

A

Below we show for some segments whether they are considered to cross
the ray or not. We can see in the last two examples that the behavior is
different if the segment touches the ray from below or from above.
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A

Pi

Pi+1

• touches ray: OK

• halves 6=: OK

⇒ crossing

A

Pi

Pi+1

• touches ray: KO

• halves 6=: OK

⇒ no crossing

A

Pi

Pi+1

• touches ray: OK

• halves 6=: OK

⇒ crossing

A Pi

Pi+1

• touches ray: OK

• halves 6=: KO

⇒ no crossing

Exercise 2

Verify that, with this new definition of crossing, A3 and A4 are cor-
rectly detected to be inside the polygon.

Checking the halves to which the points belong is easy, but checking that
the segment touches the ray is a bit more tricky. We could check whether
the segments [Pi, Pi+1] and [AB] intersect for B very far on the ray, but
it actually we can do it more simply using orient: if Pi is below and Pi+1

above, then orient(A,Pi, Pi+1) should be positive, and otherwise it should
be negative. We can then implement this with the code below:

// true if P at least as high as A (blue part)
bool above(pt a, pt p) {

return p.y >= a.y;
}
// check if [PQ] crosses ray from A
bool crossesRay(pt a, pt p, pt q) {

return (above(a,q) - above(a,p)) * orient(a,p,q) > 0;
}

If we now return to the original problem, we still have to check whether
A is on the boundary of the polygon. We can do that by using onSegment()
defined in 2.5.1.

// if strict, returns false when A is on the boundary
bool inPolygon(vector<pt> p, pt a, bool strict = true) {
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int numCrossings = 0;
for (int i = 0, n = p.size(); i < n; i++) {

if (onSegment(p[i], p[(i+1)%n], a))
return !strict;

numCrossings += crossesRay(a, p[i], p[(i+1)%n]);
}
return numCrossings & 1; // inside if odd number of crossings

}

2.6.3 Winding number

Another way to test if A is inside polygon P1 · · ·Pn is to think of a string
with one end attached at A and the other following the boundary of the
polygon, doing one turn. If between the start position and the end position
the string has done a full turn, then we are inside the polygon. If however
the direction string has simply oscillated around the same position, then we
are outside the polygon. Another way to test it is to place one finger on
point A while another one follows the boundary of the polygon, and see if
the fingers are twisted at the end.

This idea can be generalized to the winding number. The winding num-
ber of a closed curve around a point is the number of times this curve turns
counterclockwise around the point. Here is an example.

A1

A2

A3

A4

A5

A6

Points A1 and A2 are completely out of the curve so the winding number
around them is 0 (no turn). Points A3 and A4 are inside the main loop, which
goes counterclockwise, so the winding number around them is 1. The curve
turns twice counterclockwise around A5, so the winding number is 2. Finally
the curve goes clockwise around A6, for a winding number of −1.
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Math insight

In fact, we can move the curve continuously without changing the
winding number as long as we don’t touch the reference point. There-
fore we can “untie” loops which don’t contain the point. That’s why,
when looking at A3 or A4, we can completely ignore the loops that
contain A5 and A6.

Math insight

If we move the reference point while keeping the curve unchanged,
the value of the winding number will only change when it crosses
the curve. If it crosses the curve from the right (according to its
orientation), the winding number increases by 1, and if it crosses it
from the left, the winding number decreases by 1.

+1 −1

Exercise 3

What value will areaPolygon() (section 2.6.1) give when applied to a
closed polyline that crosses itself, like the curve above, instead of a
simple polygon? Assume we don’t take the absolute value.

[Go to solution]

To compute the winding number, we need to keep track of the amplitude
travelled, positive if counterclockwise, and negative if clockwise. We can use
angle() from section 2.3.1 to help us.

// amplitude travelled around point A, from P to Q
double angleTravelled(pt a, pt p, pt q) {

double ampli = angle(p-a, q-a);
if (orient(a,p,q) > 0) return ampli;
else return -ampli;

}

Another way to implement it uses the arguments of points:

double angleTravelled(pt a, pt p, pt q) {
// remainder ensures the value is in [-pi,pi]
return remainder(arg(q-a) - arg(p-a), 2*M_PI);

}
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Then we simply sum it all up and figure out how many turns were made:

int windingNumber(vector<pt> p, pt a) {
double ampli = 0;
for (int i = 0, n = p.size(); i < n; i++)

ampli += angleTravelled(a, p[i], p[(i+1)%n]);
return round(ampli / (2*M_PI));

}

Warning

The winding number is not defined if the reference point is on the
curve/polyline. If it is the case, this code will give arbitrary results,
and potentially (int)NAN.

Angles of integer points

While the code above works, its use of floating-point numbers makes it non
ideal, and when coordinates are integers, we can do better. We will define a
new way to work with angles, as a type angle. This type will also be useful
for other tasks, such as for sweep angle algorithms.

Instead of working with amplitudes directly, we will represent angles by a
point and a certain number of full turns.5 More precisely, in this case, we will
use point (x, y) and number of turns t to represent angle atan2(y, x) + 2πt.

We start by defining the new type angle. We also define a utility function
t360() which turns an angle by a full turn.

struct angle {
pt d; int t = 0; // direction and number of full turns
angle t180(); // to be defined later
angle t360() {return {d, t+1};}

};

The range of angles which have the same value for t is (−π + 2πt, π + 2πt].

We will now define a comparator between angles. The approach is the
same as what we did for the polar sort in section 2.3.2, so we will reuse the
function half() which separates the plane into two halves so that angles
within one half are easily comparable:

bool half(pt p) {
return p.y > 0 || (p.y == 0 && p.x < 0);

}

5This approach is based on an original idea in [2], see “Angle.h”.
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It returns true for the part highlighted in blue and false otherwise.
Thus, in practice, it allows us to separate each range (−π + 2πt, π + 2πt]
into the subranges (−π + 2πt, 2πt], for which half() returns false, and
(2πt, π + 2πt], for which half() returns true.

(−π + 2πt, 2πt]

(2πt, π + 2πt]

We can now write the comparator between angles, which is nearly iden-
tical to the one we used for polar sort, except that we first check the number
of full turns t.

bool operator<(angle a, angle b) {
return make_tuple(a.t, half(a.d), 0) <

make_tuple(b.t, half(b.d), cross(a.d,b.d));
}

We also define the function t180() which turns an angle by half a turn
counterclockwise. The resulting angle has an opposite direction. To find the
number of full turns t, there are two cases:

• if half(d) is false, we are in the lower half (−π + 2πt, 2πt], and we
will move to the upper half (2πt, π + 2πt], without changing t;

• if half(d) is true, we are in the upper half (2πt, π + 2πt], and we will
move to (−π + 2π(t+ 1), 2π(t+ 1)], the lower half for t+ 1.

angle t180() {return {d*(-1), t + half(d)};}

We will now implement the function that will allow us to compute the
winding number. Consider an angle with direction point D. Given a new
direction D′, we would like to move the angle in such a way that if direction
D′ is to the left of D, the angle increases, and if D′ is to the right of D, the
angle decreases.

D

D′
O

D′ left of D
⇒ increase

D

D′

O

D′ right of D
⇒ decrease

In other words, we want the new angle to be an angle with direction D′,
and such that the difference between it and the old angle is at most 180◦.
We will use this formulation to implement the function:
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angle moveTo(angle a, pt newD) {
// check that segment [DD’] doesn’t go through the origin
assert(!onSegment(a.d, newD, {0,0}));

angle b{newD, a.t};
if (a.t180() < b) // if b more than half a turn bigger

b.t--; // decrease b by a full turn
if (b.t180() < a) // if b more than half a turn smaller

b.t++; // increase b by a full turn
return b;

}

We know that b as it is first defined is less than a full turn away from a, so
the two conditions are enough to bring it within half a turn of a.

We can use this to implement a new version of windingNumber() very
simply. We start at some vertex of the polygon, move vertex to vertex while
maintaining the angle, then read the number of full turns once we come back
to it.

int windingNumber(vector<pt> p, pt a) {
angle a{p.back()}; // start at last vertex
for (pt d : p)

a = moveTo(a, d); // move to first vertex, second, etc.
return a.t;

}

2.7 Circles

2.7.1 Defining a circle

Circle (O, r) is the set of points at distance exactly r from a point O =
(x0, y0).

We can also define it by equation

(x− x0)2 + (y − y0)2 = r2

or parametrically as the set of all points

(x0 + r cos θ, y0 + r sin θ)

with θ in [0, 2π), for example.
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r cos θ

r sin θ
θ

2.7.2 Circumcircle

The circumcircle of a triangle ABC is the circle that passes through all
three points A, B and C.

O

A

B

C

It is undefined if A, B, C are aligned, and unique otherwise. We can
compute its center O this way:

pt circumCenter(pt a, pt b, pt c) {
b = b-a, c = c-a; // consider coordinates relative to A
assert(cross(b,c) != 0); // no circumcircle if A,B,C aligned
return a + perp(b*sq(c) - c*sq(b))/cross(b,c)/2;

}

The radius can then be found by taking the distance to any of the three
points, or directly taking the length of perp(b*sq(c)- c*sq(b))/cross(b,c)
/2, which represents vector

#    »

AO.
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Math insight

The formula can be easily interpreted as the intersection point of the
line segment bisectors of segments [AB] and [AC], when considering
coordinates relative to A. Consider the bisector of [AB]. It is per-
pendicular to [AB], so its direction vector is perp(

#    »

AB), and it passes
through the middle point 1

2

#    »

AB, so its constant term (variable c in

the line structure) is perp(
#    »

AB) × 1
2

#    »

AB = −1
2 |AB|2. Similarly, the

bisector of [AC] is defined by direction vector perp(
#    »

AC) and constant
term −1

2 |AC|2. We then just plug those into the formula for line
intersection found in section 2.4.6:

#    »

AO =
(−1

2 |AB|2) perp(
#    »

AC)− (−1
2 |AC|2) perp(

#    »

AB)

perp(
#    »

AB)× perp(
#    »

AC)

=
perp(|AC|2 #    »

AB − |AB|2 #    »

AC)

2
#    »

AB × #    »

AC

2.7.3 Circle-line intersection

A circle (O, r) and a line l have either 0, 1, or 2 intersection points.

0 intersections 1 intersection 2 intersections

Let’s assume there are two intersection points I and J . We first find the
midpoint of [IJ ]. This happens to be the projection of O onto the line l,
which we will call P .

O P

J

I

r

d

h
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Once we have found P , to find I and J we need to move along the line
by a certain distance h. By the Pythagorean theorem, h =

√
r2 − d2 where

d is the distance from O to l.

This gives the following implementation (note that we have to divide
by ‖ #»vl‖ so that we move by the correct distance). It returns the number
of intersections, and places them in out. If there is only one intersection,
out.first and out.second are equal.

int circleLine(pt o, double r, line l, pair<pt,pt> &out) {
double h2 = r*r - l.sqDist(o);
if (h2 >= 0) { // the line touches the circle

pt p = l.proj(o); // point P
pt h = l.v*sqrt(h2)/abs(l.v); // vector parallel to l, of

length h
out = {p-h, p+h};

}
return 1 + sgn(h2);

}

2.7.4 Circle-circle intersection

Similarly to the previous section, two circles (O1, r1) and (O2, r2) can have
either 0, 1, 2 or an infinity of intersection points (in case the circles are
identical).

0 intersections 1 intersection

2 intersections ∞ intersections

As before, we assume there are two intersection points I and J and we
try to find the midpoint of [IJ ], which we call P .
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O1 O2

I

J

P

r1 r2
h

Let d = |O1O2|. We know from the law of cosines on O1O2J that

cos(]O2O1J) =
d2 + r2

1 − r2
2

2dr1

and since O1PJ is a right triangle,

|O1P | = r1 cos(]O2O1J) =
d2 + r2

1 − r2
2

2d

which allows us to find P .

Now to find h = |PI| = |PJ |, we apply the Pythagorean theorem on
triangle O1PJ , which gives h =

√
r2

1 − |O1P |2.

This gives the following implementation, which works in a very similar
way to the code in the previous section. It aborts if the circles are identical.

int circleCircle(pt o1, double r1, pt o2, double r2, pair<pt,pt> &
out) {
pt d=o2-o1; double d2=sq(d);
if (d2 == 0) {assert(r1 != r2); return 0;} // concentric circles
double pd = (d2 + r1*r1 - r2*r2)/2; // = |O_1P| * d
double h2 = r1*r1 - pd*pd/d2; // = hˆ2
if (h2 >= 0) {

pt p = o1 + d*pd/d2, h = perp(d)*sqrt(h2/d2);
out = {p-h, p+h};

}
return 1 + sgn(h2);

}
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Math insight

Let’s check that if d 6= 0 and variable h2 in the code is nonnegative,
there are indeed 1 or 2 intersections (the opposite is clearly true: if
h2 is negative, the length h cannot exist). The value of h2 is

r2
1 −

(d2 + r2
1 − r2

2)2

4d2

=
4d2r2

1 − (d2 + r2
1 − r2

2)2

4d2

=
−d4 − r4

1 − r4
2 + 2d2r2

1 + 2d2r2
2 + 2r2

1r
2
2

4d2

=
(d+ r1 + r2)(d+ r1 − r2)(d+ r2 − r1)(r1 + r2 − d)

4d2

Let’s assume this is nonnegative. Thus an even number of those
conditions are false:

d+ r1 ≥ r2 d+ r2 ≥ r1 r1 + r2 ≥ d

Since d, r1, r2 ≥ 0, no two of those can be simultaneously false, so
they must all be true. As a consequence, the triangle inequalities are
verified for d, r1, r2, showing the existence of a point at distance r1

from O1 and distance r2 from O2.

2.7.5 Tangent lines

We say that a line is tangent to a circle if the intersection between them is
a single point. In this case, the ray going from the center to the intersection
point is perpendicular to the line.

Here we will try and find a line which is tangent to two circles (O1, r1)
and (O2, r2). There are two types of such tangents: outer tangents, for
which both circles are on the same side of the line, and inner tangents, for
which the circles are on either side.
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outer tangents inner tangents

We will study the case of outer tangents. Our first goal is to find a unit
vector parallel to the rays [O1P1] and [O2P2], in other words, we want to
find #»v =

#        »

O1P1/r1. To do this we will try to find angle α marked on the
figure.

O1 O2

P1

P2

r 1
−
r 2

d

h

α

#» v

If we project O2 onto the ray from O1, this forms a right triangle with
hypothenuse d = |O1O2| and adjacent side r1 − r2, which means cosα =
r1−r2
d . By the Pythagorean theorem, the third side is h =

√
d2 − (r1 − r2)2,

and we can compute sinα = h
d .

From this we find #»v in terms of
#         »

O1O2 and perp
(

#         »

O1O2

)
as

#»v = cosα
(

#         »

O1O2 /d
)
± sinα

(
perp

(
#         »

O1O2

)
/d
)

=
(r1 − r2)

#         »

O1O2 ± hperp
(

#         »

O1O2

)

d2

where the ± depends on which of the two outer tangents we want to find.

We can then compute P1 and P2 as

P1 = O1 + r1
#»v and P2 = O2 + r2

#»v

72



Exercise 4

Study the case of the inner tangents and show that it corresponds
exactly to the case of the outer tangents if r2 is replaced by −r2.
This will allow us to write a function that handles both cases at once
with an additional argument bool inner and this line:

if (inner) r2 = -r2;

This gives the following code. It returns the number of tangents of the
specified type. Besides,

• if there are 2 tangents, it fills out with two pairs of points: the pairs
of tangency points on each circle (P1, P2), for each of the tangents;

• if there is 1 tangent, the circles are tangent to each other at some point
P , out just contains P 4 times, and the tangent line can be found as
line(o1,p).perpThrough(p) (see 2.4.3);

• if there are 0 tangents, it does nothing;

• if the circles are identical, it aborts.

int tangents(pt o1, double r1, pt o2, double r2, bool inner, vector<
pair<pt,pt>> &out) {
if (inner) r2 = -r2;
pt d = o2-o1;
double dr = r1-r2, d2 = sq(d), h2 = d2-dr*dr;
if (d2 == 0 || h2 < 0) {assert(h2 != 0); return 0;}
for (double sign : {-1,1}) {

pt v = (d*dr + perp(d)*sqrt(h2)*sign)/d2;
out.push_back({o1 + v*r1, o2 + v*r2});

}
return 1 + (h2 > 0);

}

Conveniently, the same code can be used to find the tangent to a circle
passing through a point by setting r2 to 0 (in which case the value of inner
doesn’t matter).
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Chapter 3

3D geometry

In this chapter we cover the basic objects and concepts of 3D geometry, and
the operations we can do on them. Although the additional dimension adds
some complexity which can make things more difficult and interesting, a
lot of things work the same way as they do in 2D. Therefore, we will make
frequent references to chapter 2, which we consider as a prerequisite.

3.1 Points, products and orientation

In this first section, we define our point representation, we explain how the
dot and cross products we saw in 2D translate into 3D, and we show how a
combination of the two, the mixed product, can help us define a 3D analog
of the orient() function.

3.1.1 Point representation

We will define points and vectors in space by their coordinates (x, y, z): their
positions along three perpendicular axes.

x
y

z

P = (1, 3, 2)

As we did in 2D, we start with some basic operators.

typedef double T;
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struct p3 {
T x,y,z;

// Basic vector operations
p3 operator+(p3 p) {return {x+p.x, y+p.y, z+p.z};}
p3 operator-(p3 p) {return {x-p.x, y-p.y, z-p.z};}
p3 operator*(T d) {return {x*d, y*d, z*d};}
p3 operator/(T d) {return {x/d, y/d, z/d};} // only for floating

-point

// Some comparators
bool operator==(p3 p) {return tie(x,y,z) == tie(p.x,p.y,p.z);}
bool operator!=(p3 p) {return !operator==(p);}

};

Choosing the scalar type T is done the same way as in 2D, see 2.1.2 for our
remarks on that.

For convenience, we also define a zero vector
#»
0 = (0, 0, 0):

p3 zero{0,0,0};

3.1.2 Dot product

The dot product is exactly the same as in 2D. It is defined as

#»v · #»w = ‖ #»v ‖‖ #»w‖ cos θ

where ‖ #»v ‖ and ‖ #»w‖ are the lengths of the vectors and θ is amplitude of the
angle between #»v and #»w. So in other words, the 3D dot product of #»v and
#»w is equal to the 2D dot product they would have on a plane that contains
them both.

We recall the possible cases for the sign of the dot product:

#»v
θ

#»w

#»v

θ
#»w

#»v

θ
#»w

θ < π/2 θ = π/2 θ > π/2
#»v · #»w = 5 #»v · #»w = 0 #»v · #»w = −5

We recall some properties of dot product and add a few:

• symmetry: #»v · #»w = #»w · #»v ;
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• linearity: ( #»v1 + #»v2) · #»w = #»v1 · #»w + #»v2 · #»w (also on the right);

• #»v · #»w = 0 iff #»v and #»w are perpendicular;

• #»v · #»w stays constant if #»w moves perpendicular to #»v .

Like in 2D, dot product is very simple to implement:

T operator|(p3 v, p3 w) {return v.x*w.x + v.y*w.y + v.z*w.z;}

Since 3D geometry uses dot and cross product a lot, to shorten notations
we will be using operator | for dot product and operator * for cross product.
We chose them for these mostly arbitrary reasons:

• | has a lower precedence than * which is desirable, it kind of looks like
a “parallel” operator, and since it most often has to be parenthesized
(e.g. (v|w) == 0), it can be a bit reminiscent of the inner product
notation 〈v, w〉;
• * is the closest thing to a cross in overloadable R++ operators, and

the compiler doesn’t produce a warning if you don’t paranthesize b*c
in expressions such as a|b*c, which we will use a lot.

We define the usual sq() and abs() based on dot product and add a
unit() function that makes the norm of a vector equal to 1 while preserving
its direction.

T sq(p3 v) {return v|v;}
double abs(p3 v) {return sqrt(sq(v));}
p3 unit(p3 v) {return v/abs(v);}

Like in 2D, we can also use dot product to find the amplitude in [0, π]
of the angle between vectors #»v and #»w, see secton 2.3.1 for more details.

double angle(p3 v, p3 w) {
double cosTheta = (v|w) / abs(v) / abs(w);
return acos(max(-1.0, min(1.0, cosTheta)));

}

3.1.3 Cross product

While the cross product in 2D is a scalar, in 3D it is a vector. If #»v and #»w
are parallel, #»v × #»w =

#»
0 , and otherwise it is defined as

#»v × #»w = (‖ #»v ‖‖ #»w‖ sin θ) #»n

where ‖ #»v ‖ and ‖ #»w‖ are the lengths of the vectors, θ is amplitude of the
angle between #»v and #»w, and #»n is a unit vector perpendicular to both #»v
and #»w chosen using the right-hand rule. Note that the norm of the 3D cross
product is equal to the absolute value of the 2D cross product.
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#»v
#»w

#»v × #»w

The right-hand rule says this: if you take your right hand, align your
thumb with #»v and your extended index #»w, and fold your middle finger at
a 90◦ angle, then it will point in the direction of #»v × #»w. Another way to
express it is to say that if you draw #»v and #»w on a sheet of paper and look at
the sign of their 2D cross product, if it is positive #»v × #»w will point up from
the sheet, and if it is negative #»v × #»w will point down through the sheet.

#»v

#»w

#»v × #»w

#»v

#»w

#»v × #»w

points towards you points away from you

We summarize some key properties of the cross product:

• anti-symmetry: #»v × #»w = − #»w × #»v ;

• linearity: ( #»v1 + #»v2)× #»w = #»v1 × #»w + #»v2 × #»w (also on the right);

• #»v × #»w is perpendicular to both #»v and #»w;1

• #»v × #»w is perpendicular to the plane containing #»v and #»w;1

• #»v × #»w =
#»
0 iff #»v and #»w are parallel;

• #»v × #»w stays constant if #»w moves parallel to #»v .

Among those, the one which we will use most often is the fact that it is
perpendicular to #»v and #»w.

The cross product can be computed this way:

p3 operator*(p3 v, p3 w) {
return {v.y*w.z - v.z*w.y,

v.z*w.x - v.x*w.z,
v.x*w.y - v.y*w.x};

}

Indeed, it is easy to check that this vector is perpendicular to both #»v and
#»w using dot product. Here it is for #»v :

( #»v × #»w) · #»v = (vywz − vzwy, vzwx − vxwz, vxwy − vywx) · (vx, vy, vz)
= vxvywz − vxvzwy + vyvzwx − vyvxwz + vzvxwz − vzvywx
= 0

1if #»v × #»w 6= #»
0
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Note that the z-coordinate is the same expression as the 2D cross prod-
uct: indeed, it is the value of the 2D cross product if #»v and #»w are projected
onto plane z = 0.

3.1.4 Mixed product and orientation

A very useful combination of dot product and cross product is the mixed
product. We define the mixed product of three vectors #»u , #»v and #»w as

( #»u × #»v ) · #»w

Let Π be the plane containing #»u and #»v . We know that #»n = #»u × #»v is
perpendicular to Π, and #»n · #»w will be positive if the angle between #»n and
#»w is less than 90◦. This will happen if #»w points to the same side of Π as #»n ,
while when #»n · #»w is negative #»w will point to the opposite side.

The two cases are illustrated in the drawings below. The plane contain-
ing #»u and #»v is viewed from the side:

pla
ne

of
#»u and

#»v

#»n
#»w

pla
ne

of
#»u and

#»v

#»n

#»w

( #»u × #»v ) · #»w > 0 ( #»u × #»v ) · #»w < 0

Note that this is similar to how the 2D cross product #»v × #»w tells us to
which side of to line containing #»v vector #»w points. So, we similarly define
an orient() function based on it:

orient(P,Q,R, S) =
(

#    »

PQ× #    »

PR
)
· #   »

PS

It is positive if S is on the side of plane PQR in the direction of
#    »

PQ× #    »

PR,
negative if S is on the other side, and zero if S is on the plane.

S

P Q

R

S
P Q

R

S
P Q

R

S above PQR S on PQR S below PQR

orient(P,Q,R, S) > 0 orient(P,Q,R, S) = 0 orient(P,Q,R, S) < 0
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This orient() function has several very nice properties. First, it stays
the same if we swap any three arguments in a circular way: for exam-
ple let’s take P,Q, S, then orient(P,Q,R, S) = orient(Q,S,R, P ). On the
other hand, swapping any two arguments changes its sign: for example,
orient(P,Q,R, S) = − orient(P, S,R,Q).

Exercise 5

Show that those properties also apply to the mixed product. For
example, ( #»u × #»v ) · #»w = ( #»v × #»w) · #»u and ( #»u × #»v ) · #»w = −( #»u × #»w) · #»v .

[Go to solution]

Earlier, we implicitly assumed that P,Q,R were not collinear, but in
general orient(P,Q,R, S) is zero if and only if P,Q,R, S are coplanar, so
when any three points are collinear it is always zero. We can also say that
it is nonzero if and only if lines PQ and RS are skew, that is, neither
intersecting nor parallel.

Finally, |orient(P,Q,R, S)| is equal to six times the volume of tetrahe-
dron PQRS.

It is implemented by simply writing down the definition:

T orient(p3 p, p3 q, p3 r, p3 s) {return (q-p)*(r-p)|(s-p);}

Exercise 6

A convenient way to check whether two lines PQ and RS are skew is

to check whether
(

#    »

PQ× #   »

RS
)
· #    »

PR 6= 0: in fact you can replace PR

by any vector going from PQ to RS.
Using the properties of dot product, cross product and orient(), prove
that (

#    »

PQ× #   »

RS
)
· #    »

PR = − orient(P,Q,R, S)

[Go to solution]

Let’s say we have a plane Π and a vector #»n perpendicular to it (a normal
to the plane). Then an interesting variant is to replace

#   »

PS by #»n , giving the
expression (

#    »

PQ× #    »

PR
)
· #»n

This is equivalent to computing the 2D orient(P ′, Q′, R′) on Π, where P ′, Q′, R′

are the projections of P,Q,R on Π.
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Q

P

R#»n

Q

P
R

#»n

Q

P R

#»n

left turn aligned right turn(
#    »

PQ× #    »

PR
)
· #»n > 0

(
#    »

PQ× #    »

PR
)
· #»n = 0

(
#    »

PQ× #    »

PR
)
· #»n < 0

T orientByNormal(p3 p, p3 q, p3 r, p3 n) {return (q-p)*(r-p)|n;}

3.2 Planes

In this section we will discuss how to represent planes, and many ways we
can use them. We will see that they play a very similar role to the role lines
play in 2D, and many of the operations we defined in section 2.4 have a
direct equivalent here. Since the explanations are nearly identical, we make
them a bit shorter here; please refer to section 2.4 if you want more details.

3.2.1 Defining planes

Planes are sets of points (x, y, z) which obey an equation of the form ax +
by + cz = d. Here, a, b, c determine the orientation of the plane, while d
determines its position relative to the origin.

ax+ by + cz = d− 1

ax+ by + cz = d

ax+ by + cz = d+ 1

Vector #»n = (a, b, c) is perpendicular to the plane and is called a normal
of the plane. The equation can be rewritten as #»n · (x, y, z) = d: that is, the
plane is formed by all points whose dot product with #»n is equal to constant
d. This makes sense, because we know that the dot product doesn’t change
when one vector (here, the point (x, y, z)) moves perpendicularly to the
other (here, the normal #»n).
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#»n

Here are some other ways to define a plane, and how to find #»n and d in
each case:

• if we know the normal #»n and a point P belonging to the plane: we
can find d as #»n ·P ;

• if we know a point P and two (non-parallel) vectors #»v and #»w that are
parallel to the plane: we can define #»n = #»v × #»w then find d as above;

• if we know 3 non-collinear points P,Q,R on the plane: we first find
two vectors #»v =

#    »

PQ and #»w =
#    »

PR that are parallel from the plane,
then find #»n and d as above.

We implement this with the following structure and constructors:

struct plane {
p3 n; T d;
// From normal n and offset d
plane(p3 n, T d) : n(n), d(d) {}
// From normal n and point P
plane(p3 n, p3 p) : n(n), d(n|p) {}
// From three non-collinear points P,Q,R
plane(p3 p, p3 q, p3 r) : plane((q-p)*(r-p), p) {}

// Will be defined later:
// - these work with T = int
T side(p3 p);
double dist(p3 p);
plane translate(p3 t);
// - these require T = double
plane shiftUp(double dist);
p3 proj(p3 p);
p3 refl(p3 p);

};

3.2.2 Side and distance

The first thing we are interested for a plane Π in is the value of ax+by+cz−d.
If it’s zero, the point is on Π, and otherwise it tells us which side of Π the
point lies. We name it side(), like its 2D line equivalent:
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T side(p3 p) {return (n|p)-d;}

which we will denote sideΠ(P ).

sideΠ(P ) is positive if P is on the side of Π pointed by #»n , and negative
for the other side. In fact, for given points P,Q,R, S, plane(p,q,r).side(s)
gives the same value as orient(p,q,r,s).

P#»n

P

#»n

P

#»n

P above P on plane P below

sideΠ(P ) = 3 sideΠ(P ) = 0 sideΠ(P ) = −2

And just like the side() for 2D lines, we can get the distance from it, if
we compensate for the norm of #»n :

double dist(p3 p) {return abs(side(p))/abs(n);}

3.2.3 Translating a plane

If we translate a plane by a vector
#»
t , the normal #»n remains unchanged, but

the offset d changes.

#»
t

To find the new value d′, we use the same argument as for 2D lines:
suppose point P is on the old plane, that is, #»n ·P = d. Then P +

#»
t should

be in the new plane:

d′ = #»n · (P +
#»
t ) = #»n ·P + #»n · #»

t = d+ #»n · #»
t

plane translate(p3 t) {return {n, d+(n|t)};}

And if we want to shift perpendicularly (in the direction of #»n) by some
distance δ, then #»n · #»

t becomes δ‖ #»n‖, which gives the following code:

plane shiftUp(double dist) {return {n, d + dist*abs(n)};}
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3.2.4 Orthogonal projection and reflection

The orthogonal projection of a point P on a plane Π is the point on Π that
is closest to P . The reflection of point P by plane Π is the point on the
other side of Π that is at the same distance and has the same orthogonal
projection.

P

P ′

P ′

P

projection reflection

We use a similar reasoning as in section 2.4.7. Clearly, to go from P to
its projection on Π, we need to move perpendicularly to Π, that is, we need
to move by k #»n for some k, so that the resulting point P + k #»n is on Π.

From this we find k:

#»n · (P + k #»n) = d⇔ #»n ·P + k( #»n · #»n) = d

⇔ k‖ #»n‖2 = −( #»n ·P − d)

⇔ k = −sideΠ(P )

‖ #»n‖2

And to find the reflection, we need to move P twice as far to P + 2k #»n ,
so we get the following implementation for both:

p3 proj(p3 p) {return p - n*side(p)/sq(n);}
p3 refl(p3 p) {return p - n*2*side(p)/sq(n);}

3.2.5 Coordinate system based on a plane

When we have a plane Π, sometimes we will want to know what are the
coordinates of a point in Π. That is, suppose we have a few points that we
know are coplanar, and we want to use some 2D algorithm on them. How
do we get the 2D coordinates of those points?

To do this, we need to chose an origin point O on Π and two vectors
# »

dx and
#»

dy indicating the desired x and y directions. Let’s first assume
# »

dx
and

#»

dy are perpendicular and their norms are 1. Then, to find the x- and
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y-coordinate of a point P on Π, we simply need to compute

x =
#    »

OP · # »

dx

y =
#    »

OP · #»

dy

and if we also have vector
#»

dz =
# »

dx ×
#»

dy perpendicular to the first two, we
can find the “height” of P respective to Π:

z =
#    »

OP · #»

dz

P

# »

dx

# »

dy

#»

dz

If we have three non-collinear points P,Q,R that form plane Π, how can
we choose O,

# »

dx,
#»

dy and
#»

dz?

1. First, we choose the origin O to be P .

2. Then, we choose
# »

dx to be
#    »

PQ, and scale it to have a norm of 1.

3. Next, we compute
#»

dz =
# »

dx ×
#    »

PR, and scale it to have a norm of 1. It
is perpendicular to Π because it is perpendicular to two non-parallel
vectors in it.

4. Finally, we find
#»

dy as
#»

dz ×
# »

dx.

This gives the following code. Method pos2d() gives the position on the
plane as a 2D point, and method pos3d() gives the position and height as
a 3D point (so in a way this structure represents a change of coordinate
system).

struct coords {
p3 o, dx, dy, dz;
// From three points P,Q,R on the plane:
// build an orthonormal 3D basis
coords(p3 p, p3 q, p3 r) : o(p) {

dx = unit(q-p);
dz = unit(dx*(r-p));
dy = dz*dx;

}
// From four points P,Q,R,S:
// take directions PQ, PR, PS as is
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coords(p3 p, p3 q, p3 r, p3 s) :
o(p), dx(q-p), dy(r-p), dz(s-p) {}

pt pos2d(p3 p) {return {(p-o)|dx, (p-o)|dy};}
p3 pos3d(p3 p) {return {(p-o)|dx, (p-o)|dy, (p-o)|dz};}

};

Math insight

The second constructor allows us specify points P,Q,R, S and choose
# »

dx =
#    »

PQ,
#»

dy =
#    »

PR and
#»

dz =
#   »

PS directly. This can be useful if we

don’t care that the 2D coordinate system (
# »

dx,
#»

dy) is not orthonormal
(perpendicular and of norm 1), because it allows us to keep using
integer coordinates.
If

# »

dx and
#»

dy are not perpendicular or do not have a norm of 1, the
computed distances and angles will not be correct. But if we are only
interested in the relative positions of lines and points, and finding
the intersections of lines or segments, then everything works fine.
Computing the 2D convex hull of a set of points is an example of
such a problem, because it only requires that the sign of orient() is
correct.

3.3 Lines

In this section we will discuss how to represent lines in 3D, and some related
problems, including finding the line at the intersection of two planes, and
finding the intersection point of a plane and a line.

3.3.1 Line representation

Unlike 2D lines and planes, 3D lines don’t have a nice representation as a
single equation on coordinates like ax + by = c or ax + by + cz = d. We
could represent them as the intersection of two planes, like

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

but this representation is not very convenient to work with, and there are
many pairs planes we could choose.
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a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

Instead, we will work with a parametric representation: we take a point
O on the line and a vector

#»

d parallel to the line and say that the points
belonging to the line are all points

P = O + k
#»

d

where k is a real parameter.

O

#»

d

Note that here,
#»

d plays the same role as #»v did for 2D lines (see sec-
tion 2.4.1).

If we are given two points P,Q on the line, we can set O = P and
#»

d =
#    »

PQ, so we implement the structure like this:

struct line3d {
p3 d, o;
// From two points P, Q
line3d(p3 p, p3 q) : d(q-p), o(p) {}
// From two planes p1, p2 (requires T = double)
line3d(plane p1, plane p2); // will be implemented later

// Will be defined later:
// - these work with T = int
double sqDist(p3 p);
double dist(p3 p);
bool cmpProj(p3 p, p3 q);
// - these require T = double
p3 proj(p3 p);
p3 refl(p3 p);
p3 inter(plane p) {return o - d*p.side(o)/(d|p.n);}

};
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3.3.2 Distance from a line

A point P is on a line l described by O,
#»

d if and only if
#    »

OP is parallel to
#»

d . This is the case when
#»

d × #    »

OP =
#»
0 .

OP

#    »

OP
#»

d

#»

d × #    »

OP

More generally, this product
#»

d × #    »

OP also gives us information about the
distance to the line: the distance from l to P is equal to

∥∥ #»

d × #    »

OP
∥∥

∥∥ #»

d
∥∥

double sqDist(p3 p) {return sq(d*(p-o))/sq(d);}
double dist(p3 p) {return sqrt(sqDist(p));}

3.3.3 Sorting along a line

Just like we did with 2D lines in section 2.4.4, we can sort points according
to their position along a line l. To find out if a point P should come before
another point Q, we simply need to check whether

#»

d ·P <
#»

d ·Q

so we can use the following comparator:

bool cmpProj(p3 p, p3 q) {return (d|p) < (d|q);}

3.3.4 Orthogonal projection and reflection

Let’s say we want to project P on a line l, that is find the closest point
to P on l. Our usual approach to projecting things, which is to move P
perpendicularly until it touches l, doesn’t work as well here: indeed, there
are many possible directions that are perpendicular to l.
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O

P
P ′

#»

d

O

P

P ′

#»

d

projection reflection

Instead we will start from O and move along the line until we reach the
projection of P . We have seen in the previous section that taking the dot
product with

#»

d tells us how far some point is along l. In fact, if we compute
#»

d · #    »

OP , this tells us the (signed) distance from O to the projection of P ,
multiplied by ‖ #»

d ‖. So we can find the projection this way:

p3 proj(p3 p) {return o + d*(d|(p-o))/sq(d);}

Once we’ve found the projection P ′, we can find the reflection P ′′ easily,
since it is twice as far in the same direction: we have P ′′ = P ′+

#     »

PP ′, which
becomes 2P ′ − P if we allow vector operations on points.

p3 refl(p3 p) {return proj(p)*2 - p;}

3.3.5 Plane-line intersection

Let’s say we have a plane Π, represented by vector #»n and real d, and a line
l, represented by point O and

#»

d . To find an intersection between them, we
need to find a point O + k

#»

d that lies on Π, that is, such that

#»n ·
(
O + k

#»

d
)

= d

O
#»

d

#»n

Solving for k, we find

k =
d− #»n ·O

#»n · #»

d
=
− sideΠ(O)

#»n · #»

d

88



which can be implemented directly:

p3 inter(plane p) {return o - d*p.side(o)/(p.n|d);}

Note that this is undefined when #»n · #»

d = 0, that is, when Π and l are
parallel.2

3.3.6 Plane-plane intersection

If we are given two non-parallel planes Π1 and Π2 (defined by # »n1, d1 and
# »n2, d2), how can we find their common line?

First we need to find its direction
#»

d . Clearly, the direction needs to be
parallel to both planes, so it must be perpendicular to both # »n1 and # »n2. Thus
we take

#»

d = # »n1 × # »n2.

Then we need to find an arbitrary point O that is on both planes. Here,
we will actually compute the closest such point to the origin. It is given by

O =

(
d1

# »n2 − d2
# »n1

)
× #»

d
∥∥ #»

d
∥∥2

Let’s analyze this expression. It is the sum of two vectors,

#»v1 =
d1∥∥ #»

d
∥∥2

(
# »n2 ×

#»

d
)

#»v2 = − d2∥∥ #»

d
∥∥2

(
# »n1 ×

#»

d
)

Because #»v1 is perpendicular to # »n2, it is parallel to Π2, while #»v2 is perpendic-
ular to # »n1 and thus parallel to Π1. So we can see #»v1 as the vector that leads
from the origin to Π1 while staying parallel to Π2, and #»v2 as the vector that
leads from the origin to Π2 while staying parallel to Π1.

Π1

Π2

O

#»v1
#»v2

2We take a closer look at criteria for parallelism and perpendicularity in section 3.4.
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Let’s verify that O is on Π1, that is, # »n1 ·O = # »n1 · ( #»v1 + #»v2) = d1. Since
#»v2 is perpendicular to # »n1, clearly # »n1 · #»v2 = 0. What remains is

# »n1 · #»v1 =
d1∥∥ #»

d
∥∥2

(
# »n2 ×

#»

d
)
· # »n1

=
d1∥∥ #»

d
∥∥2

(
# »n1 × # »n2

)
· #»

d

=
d1∥∥ #»

d
∥∥2

(
#»

d · #»

d
)

= d1

where between the first two lines, we used the fact that the mixed product
is conserved if we swap its arguments in a circular way (see exercise 5).

We prove similarly that O is on Π2. Finally we note that both #»v1 and
#»v2 are perpendicular to

#»

d , so the vector from the origin to O is perpencular
to

#»

d , the direction of the line. Therefore it must necessarily arrive on the
line at the closest point to the origin.

We can implement this as the following constructor:

line3d(plane p1, plane p2) {
d = p1.n*p2.n;
o = (p2.n*p1.d - p1.n*p2.d)*d/sq(d);

}

3.3.7 Line-line distance and nearest points

Consider line l1 defined by O1 + k
#»

d1 and line l2 defined by O2 + k
#»

d2. If they
are parallel, the distance between them is easy to find: just find the distance
from l1 to O2. Otherwise, they are either intersecting or skew, in which case
the question is a bit more complex.

parallel intersecting skew
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Let’s call C1 the point of l1 that is closest to l2, and C2 the point on l2
that is closest to l1. Direction

#        »

C1C2 should be perpendicular to both l1 and
l2. Indeed, if it were not, it would be possible to get a smaller distance by
moving either C1 or C2. So

#        »

C1C2 is parallel to #»n =
#»

d1 ×
#»

d2.

l2

l1

C2

C1

#»

d2

#»

d1

#»n

Because of this, we could compute the distance as

|C1C2| =
∣∣ #        »

C1C2 · #»n
∣∣

‖ #»n‖

We don’t know C1 or C2 yet, but since the dot product doesn’t change when
one of the vectors moves perpendicular to the other, we can move C1 to O1

and C2 to O2, so that we get

∣∣ #        »

C1C2 · #»n
∣∣

‖ #»n‖ =

∣∣ #         »

O1C2 · #»n
∣∣

‖ #»n‖ =

∣∣ #         »

O1O2 · #»n
∣∣

‖ #»n‖

which gives the following implementation:

double dist(line3d l1, line3d l2) {
p3 n = l1.d*l2.d;
if (n == zero) // parallel

return l1.dist(l2.o);
return abs((l2.o-l1.o)|n)/abs(n);

}

Now, how can we find C1 and C2 themselves? Let’s call Π2 the plane
that contains l2 and is parallel to n2; its normal is # »n2 =

#»

d2× #»n . Then C1 is
the intersection between that plane and line l1, so we can use the formula
obtained in section 3.3.5 to find it:

C1 = O1 +

#         »

O1O2 · # »n2
#»

d1 · # »n2
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Π2

l2

l1

C2

C1

#»

d2

#»n

# »n2

This is implemented in a straightforward way. If we want C2 instead we
just have to swap l1 and l2.

p3 closestOnL1(line3d l1, line3d l2) {
p3 n2 = l2.d*(l1.d*l2.d);
return l1.o + l1.d*((l2.o-l1.o)|n2)/(l1.d|n2);

}

3.4 Angles between planes and lines

In this section, we figure out how to check whether lines and planes are
parallel or perpendicular, and then how to find the line perpendicular to a
plane going through a given point, and vice versa. All those operations are
very easy with our representation of planes and lines.

3.4.1 Between two planes

The angle between two planes is equal to the angle between their normals.
Since usually two angles of distinct amplitudes θ and π − θ are formed, we
take the smaller of the two, in [0, π2 ].

θ

π − θ

θ

# »n2
# »n1

# »n2

We can find it with the following code. We take the minimum with 1 to
avoid nan in case of imprecisions.
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double smallAngle(p3 v, p3 w) {
return acos(min(abs(v|w)/abs(v)/abs(w), 1.0));

}
double angle(plane p1, plane p2) {

return smallAngle(p1.n, p2.n);
}

In particular, we can check whether two planes are parallel/perpendicu-
lar by checking if their normals are parallel/perpendicular:

bool isParallel(plane p1, plane p2) {
return p1.n*p2.n == zero;

}
bool isPerpendicular(plane p1, plane p2) {

return (p1.n|p2.n) == 0;
}

3.4.2 Between two lines

The situation with lines is exactly the same: their angle is equal to the angle
between their direction vectors. Note that the lines aren’t necessarily in the
same plane, so the angle is taken as if they were moved until they touch.

θ

π − θ

#»

d1 #»

d2

double angle(line3d l1, line3d l2) {
return smallAngle(l1.d, l2.d);

}
bool isParallel(line3d l1, line3d l2) {

return l1.d*l2.d == zero;
}
bool isPerpendicular(line3d l1, line3d l2) {

return (l1.d|l2.d) == 0;
}
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3.4.3 Between a plane and a line

The situation when considering a plane and a line is a bit different. Let’s
consider a plane Π of normal #»n and a line l of direction vector

#»

d . When
they are perpendicular, #»n is parallel to

#»

d , and inversely when they are
parallel, #»n is perpendicular to

#»

d . In general, if the angle between #»n and
#»

d
is θ ∈ [0, π2 ], then the angle between the plane and the line is π

2 − θ.

θ

#»n
#»

d

double angle(plane p, line3d l) {
return M_PI/2 - smallAngle(p.n, l.d);

}
bool isParallel(plane p, line3d l) {

return (p.n|l.d) == 0;
}
bool isPerpendicular(plane p, line3d l) {

return p.n*l.d == zero;
}

3.4.4 Perpendicular through a point

The line perpendicular to a plane Π of normal #»n and going through a point
O is simply the line going through O and whose direction vector is #»n , or
equivalently the line going through O and O + #»n .

O

O + #»n

#»n

line3d perpThrough(plane p, p3 o) {return line(o, o+p.n);}

The plane perpendicular to a line l of direction vector
#»

d and going
through a point O is simply the plane containing O and whose normal is

#»

d .
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#»

d
O

plane perpThrough(line3d l, p3 o) {return plane(l.d, o);}

3.5 Polyhedrons

In this section, we give a brief introduction to polyhedrons, and show how
to compute their surface area and their volume.

3.5.1 Definition

A polyhedron is a region of space delimited by polygonal faces. Generally,
we will describe a polyhedron by listing its faces. Some basic conditions
apply:

• all the faces are polygons that don’t self-intersect;

• two faces either share a complete edge, or share a single vertex, or
have no common point;

• all edges are shared by exactly two faces;

• if we define adjacent faces as faces that share an edge, all faces are
connected together.

Here is a polyhedron that respects those conditions:

x
y

z

Face type Face visibility

8 triangles 7 visible

4 quadrilaterals 5 hidden
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Note that those conditions don’t exclude nonconvex polyhedrons (like
the example above), but they do exclude self-crossing polyhedrons.

3.5.2 Surface area

To compute the surface area of a polyhedron, we need to compute the area
of their faces. Like we do for polygons, we denote a face by listing its vertices
in order, like P1P2P3P4. The vertices must all be coplanar and the edges
should not intersect except at their ends.

x
y

z

P1

P2

P3

P4

How do we find the area of a face P1 · · ·Pn? First let’s take the most
simple case: a triangle ABC. If we compute cross product

#    »

AB × #    »

AC, its
direction is perpendicular to the triangle and its norm is

|AB| |AC| sin θ
where θ is the amplitude of angle between

#    »

AB and
#    »

AC. This is twice the
area of triangle ABC, as was already noted in section 2.6.1. So the area of
triangle ABC is 1

2

∥∥ #    »

AB × #    »

AC
∥∥.

A

B

C

#    »

AB × #    »

AC

If we rewrite the vectors we can obtain a more symmetric expression:

#    »

AB × #    »

AC = (B −A)× (C −A)

= B × C −B ×A−A× C +A×A
= A×B +B × C + C ×A

Let’s extend this to a quadrilateral ABCD. There are two cases:

• Triangles ABC and ACD are oriented in the same way. In this case,
vectors

#    »

AB × #    »

AC and
#    »

AC × #    »

AD point in the same direction, and the
areas should be added together. So we take the vector sum

#    »

AB× #    »

AC+
#    »

AC × #    »

AD.
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• Triangles ABC and ACD are oriented in different ways (the angle at
either B or D is concave). In this case, vectors

#    »

AB× #    »

AC and
#    »

AC× #    »

AD
point in opposite directions, and we should take the difference of the
areas. So again, taking the vector sum

#    »

AB × #    »

AC +
#    »

AC × #    »

AD will
produce the desired effect.

Same orientation Different orientation

A

B

C

D

A B

C

D

#    »

AB × #    »

AC
#    »

AC × #    »

AD
#    »

AB × #    »

AC
#    »

AC × #    »

AD

We can reformulate the sum in the same way:

#    »

AB × #    »

AC +
#    »

AC × #    »

AD = (A×B +B × C + C ×A)

+ (A× C + C ×D +D ×A)

= A×B +B × C + C ×D +D ×A

If we continue with more and more vertices, we can make the following
general conclusion. Given a polygon P1 · · ·Pn, we can compute the vector
area

#»

S =
P1 × P2 + P2 × P3 + · · ·+ Pn × P1

2

This vector is perpendicular to the polygon, and
∥∥ #»

S
∥∥ gives its area. It

is oriented such that when it points towards the observer, the vertices are
numbered in counter-clockwise order.

P1

P2

P3

P4

P5

#»

S

Note that this is very similar to the 2D formula for area we obtained in
section 2.6.1. The only thing that changes is that the result is a vector. We
can implement this straightforwardly:
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p3 vectorArea2(vector<p3> p) { // vector area * 2 (to avoid
divisions)
p3 S = zero;
for (int i = 0, n = p.size(); i < n; i++)

S = S + p[i]*p[(i+1)%n];
return S;

}
double area(vector<p3> p) {

return abs(vectorArea2(p)) / 2.0;
}

3.5.3 Face orientation

When given an arbitrary polyhedron, an important task is to orient the faces
properly, so that we know which side is inside the polyhedron and which side
is outside. In particular, we will try to order the vertices of the faces so that
their vector areas

#»

S all points towards the outside of the polyhedron. Note
that, depending on the way the polyhedron was obtained, this might already
be the case.

#»

S pointing outside (lengths not to scale)

While it’s not clear when looking at individual faces which side is inside
the polyhedron, it’s easy to deduce the correct orientation by looking at the
orientation of an adjacent face. If two faces share an edge [PQ], and the
first face lists P then Q in this order, then the other face should list them
in the other order, so that they “rotate” in the same direction. Note that
because of circularity, in P1 · · ·Pn, Pn is considered to come before P1, not
after.
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P

Q

R

S
P

Q

R

S

[P,Q,R] and [S,Q, P ] [P,Q,R] and [P,Q, S]

P → Q vs Q → P both P → Q

OK KO

So to orient the faces in a consistent way, start from an arbitrary face,
and perform a graph traversal on faces. Whenever you go from a face to a
neighboring face, reverse the new face’s vertex order if the common edge is
present in the same order on both faces. This will either orient all vector
areas towards the outside, or all towards the inside.

Here is a example implementation:

// Create arbitrary comparator for map<>
bool operator<(p3 p, p3 q) {

return tie(p.x, p.y, p.z) < tie(q.x, q.y, q.z);
}
struct edge {

int v;
bool same; // = is the common edge in the same order?

};

// Given a series of faces (lists of points), reverse some of them
// so that their orientations are consistent
void reorient(vector<vector<p3>> &fs) {

int n = fs.size();

// Find the common edges and create the resulting graph
vector<vector<edge>> g(n);
map<pair<p3,p3>,int> es;
for (int u = 0; u < n; u++) {

for (int i = 0, m = fs[u].size(); i < m; i++) {
p3 a = fs[u][i], b = fs[u][(i+1)%m];
// Let’s look at edge [AB]
if (es.count({a,b})) { // seen in same order

int v = es[{a,b}];
g[u].push_back({v,true});
g[v].push_back({u,true});

} else if (es.count({b,a})) { // seen in different order
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int v = es[{b,a}];
g[u].push_back({v,false});
g[v].push_back({u,false});

} else { // not seen yet
es[{a,b}] = u;

}
}

}

// Perform BFS to find which faces should be flipped
vector<bool> vis(n,false), flip(n);
flip[0] = false;
queue<int> q;
q.push(0);
while (!q.empty()) {

int u = q.front();
q.pop();
for (edge e : g[u]) {

if (!vis[e.v]) {
vis[e.v] = true;
// If the edge was in the same order,
// exactly one of the two should be flipped
flip[e.v] = (flip[u] ˆ e.same);
q.push(e.v);

}
}

}

// Actually perform the flips
for (int u = 0; u < n; u++)

if (flip[u])
reverse(fs[u].begin(), fs[u].end());

}

3.5.4 Volume

Suppose that the faces are oriented correctly. We will show how to compute
the volume of the polyhedron by taking the same approach as in section 2.6.1
for the 2D polygon area.

Let’s choose an arbitrary reference point O. We will compute the volume
of the polyhedron face by face: for a face P1 · · ·Pn, if the side of the face
seen from O is inside the polygon, add the volume of pyramid OP1 · · ·Pn,
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and otherwise subtract it. That way, by inclusion and exclusion, the final
result will be the volume inside the polyhedron.

Since
#»

S always points towards the outside of the polygon, we just have
to check whether

#»

S points away from O (add) or towards O (subtract).

O

P3
P1

P2

#»

S

#»

S
O

P2
P1

P3

#»

S away from O
#»

S towards O

+ volume of OP1P2P3 − volume of OP1P2P3

How do we compute the volume of pyramid OP1 · · ·Pn? We can use the
formula

volume =
area of base× height

3

It turns out that dot product
#»

S · #      »

OP1 computes exactly (area of base×
height) in absolute value. Indeed, by definition

#»

S · #      »

OP1 =
∥∥ #»

S
∥∥ |OP1| cos θ

where θ is the angle between
#»

S and
#      »

OP1. The norm
∥∥ #»

S
∥∥ is the area of

P1 · · ·Pn, the base of the pyramid, and we can easily see that |OP1| cos θ is
the height of the pyramid (up to sign).

θ
|OP1| cos θ

O

P3

P1

P2

#»

S

So the absolute value of
#»

S · #      »

OP1 is equal to the volume of pyramid
OP1 · · ·Pn, and the dot product is positive if

#»

S points away from O, and
negative if

#»

S points towards O. This is exactly the sign we want.

For the implementation, we take O to be the origin for convenience. We
divide by 6 at the end because we need to divide by 2 to get the correct area
and then by 3 because of the formula for the volume of a pyramid.
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double volume(vector<vector<p3>> fs) {
double vol6 = 0.0;
for (vector<p3> f : fs)

vol6 += (vectorArea2(f)|f[0]);
return abs(vol6) / 6.0;

}

In case the vector areas
#»

S all point towards the inside of the polyhedron
(which may happen after applying the face orientation procedure in the
previous section), vol6 will be correct but will have a negative sign. If this
happens, flip all the faces so that all

#»

S now point outside.

3.6 Spherical geometry

In this section, we look at spheres and how we can define distances, segments,
intersections and areas on spheres. We then define the related concept of
3D angles and how we can compute a 3D version of the winding number
based on spherical geometry primitives.

3.6.1 Spherical coordinate system

A sphere with center O = (x0, y0, z0) and radius r is the set of points at
distance exactly r from O. We can describe it this by equation

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2

r
r

r

x

y

z

To describe a point on a sphere, we can either directly give its coordinates
x, y, z or use the spherical coordinate system: this is the system used to
position locations on Earth. We use an angle ϕ, the latitude, which tells
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us how far North the point is (or South, if ϕ < 0), and an angle λ, the
longitude, which tells us how far East the point is (or West, if λ < 0). We
usually take ϕ ∈ [−π

2 ,
π
2 ] and λ ∈ (−π, π].

x

λ
ϕ

North

South

West

East

If the sphere is centered at the origin, the position represented by coor-
dinates (ϕ, λ) is

(r cosϕ cosλ, r cosϕ sinλ, r sinϕ)

where the z-axis points North and the x-axis points towards meridian λ = 0
(on Earth, the Greenwich meridian).

The function below finds the position given angles in degrees:

p3 sph(double r, double lat, double lon) {
lat *= M_PI/180, lon *= M_PI/180;
return {r*cos(lat)*cos(lon), r*cos(lat)*sin(lon), r*sin(lat)};

}

3.6.2 Sphere-line intersection

A sphere (O, r) and a line l have either 0, 1, or 2 intersection points.

0 intersections 1 intersection 2 intersections

Finding them is exactly like circle-line intersection: first compute the
projection P of the center onto the line, then find the intersections by moving
the appropriate distance forward or backward along l.
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O P

r

d

h

This function returns the number of intersection points and places them
in pair out if they exist.

int sphereLine(p3 o, double r, line3d l, pair<p3,p3> &out) {
double h2 = r*r - l.sqDist(o);
if (h2 < 0) return 0; // the line doesn’t touch the sphere
p3 p = l.proj(o); // point P
p3 h = l.d*sqrt(h2)/abs(l.d); // vector parallel to l, of length

h
out = {p-h, p+h};
return 1 + (h2 > 0);

}

3.6.3 Great-circle distance

The shortest distance between two points A and B on a sphere (O, r) is
given by travelling along plane OAB. It is called the great-circle distance
because it follows the circumference of one of the big circles of radius r that
split the sphere in two.

O θ

A

B

So computing the distance between A and B amounts to finding the
length of the circle arc joining them. This arc is subtended by angle θ, the
angle between

#    »

OA and
#    »

OB, so its length is simply rθ.

double greatCircleDist(p3 o, double r, p3 a, p3 b) {
return r * angle(a-o, b-o);
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}

This code also works if A and B are not actually on the sphere, in which
case it will give the distance between their projections on the sphere:

A

B

Note that in most 2D projections this great-circle path is not a straight
line, and it tends to bend northward in the Northern Hemisphere, and south-
ward in the Southern Hemisphere. This is why, for example, flights going
from London to Los Angeles fly over Greenland, although it is much further
North than both cities.

London
Los Angeles

Greenland

3.6.4 Spherical segment intersection

For points A and B on a sphere, we define spherical segment [AB] as the
path drawn by the great-circle distance between A and B on the sphere.
This is not well-defined if A and B are directly opposite each other on the
sphere, because there would be many possible shortest paths.

From simplicity, we assume that the sphere is centered at the origin. We
will call a segment [AB] valid if A and B are not opposite each other on
the sphere, or in other words, if their directions as vectors are not directly
opposite each other. Note that this definition accepts segments where A =
B.

bool validSegment(p3 a, p3 b) {
return a*b != zero || (a|b) > 0;

}
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Given two spherical segments [AB] and [CD], we would like to figure
out if they intersect, and what their intersection is. This is part of a more
general problem: given two segments [AB] and [CD] in space, if we view
them from an observation point O, does one of them hide part of the other,
that is, is there a ray from O that touches them both?

A

B

C
D O

A

B

C

D

common point on sphere common ray from O

We will solve the general problem, and make sure that our answer is
always exact when points A,B,C,D are integer points. To do this, we will
separate cases just like we did for 2D segment intersection in section 2.5.2:

1. Segments [AB] and [CD] intersect properly, that is, their intersection
is one single point which is not an endpoint of either segment. For
the general problem this means that there is a single ray from O that
touches both [AB] and [CD], and it doesn’t touch any of A,B,C,D.

2. In all other cases, the intersection, if it exists, is determined by the
endpoints. If it is a single point, it must be one of A,B,C,D, and if
it is a whole segment, it will necessarily start and end with points in
A,B,C,D.

For the rest of explanation, we will consider the case of spherical segment
intersection, because it’s easier to visualize, but it should be easy to verify
that this also applise to the general problem.

Proper intersection

Let’s deal with the first case: there is a single proper intersection point I.
For this to be the case, A and B must be on either side of plane OCD, and
C and D must be on either side of plane OAB. Put another way, A and
B must be on either side of the great circle containing C and D, and vice
versa.
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A

B

C D

We can check this with mixed product. We have to verify that

• oA = (C ×D) ·A and oB = (C ×D) ·B have opposite signs;

• oC = (A×B) ·C and oD = (A×B) ·D have opposite signs.

However, this time it’s not enough. Sometimes, even though the condi-
tions above are verified, there is no intersection, because the segments are
on opposite sides of the sphere:

C
D

A

B

C and D are on the other side of the sphere

To eliminate this kind of case, we also have to check that oA and oC have
opposite signs (this is clearly not the case here).

Exercise 7

Consider a few more examples and verify that these criteria correctly
detect proper intersections in all cases.

The intersection point I must be in the intersection of planes OAB and
OCD. So direction

#  »

OI must be perpendicular to their normals A× B and
C ×D, that is, parallel to (A×B)× (C ×D). Multiplying this by the sign
of oD gives the correct direction.

This is implemented by the code below. Note that the result, out, only
gives the direction of the intersection. If we want to find the intersection on
the sphere, we need to scale it to have length r.

bool properInter(p3 a, p3 b, p3 c, p3 d, p3 &out) {
p3 ab = a*b, cd = c*d; // normals of planes OAB and OCD
int oa = sgn(cd|a),
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ob = sgn(cd|b),
oc = sgn(ab|c),
od = sgn(ab|d);

out = ab*cd*od; // four multiplications => careful with overflow
!

return (oa != ob && oc != od && oa != oc);
}

Improper intersections

To deal with the second case, we will do as for 2D segments and test for
every point among A,B,C,D if it is on the other segment. If it is, we add
it to a set S. S will contain 0, 1, or 2 distinct points, describing an empty
intersection, a single intersection point or an intersection segment.

A B

C
D

A B

C

D

A B

C
D

S = ∅ S = {C} S = {B,C}
no intersection intersection point intersection

segment

To check whether a point P is on spherical segment [AB], we need to
check that P is on plane OAB, but also that P is is “between“ rays [OA)
and [OB) on that plane.

Let #»n = A × B, a normal of plane OAB. Checking that P is on plane
OAB is easy: #»n ·P should be 0. If P is indeed on plane OAB, then we can
check if it is to the “right” of [OA) by looking at cross product A × P . It
should be perpendicular to plane OAB. If it is in the same direction as #»n ,
then P is to the right of OA, and if it is in the opposite direction, then P is
to the left of OA. So we need to check #»n · (A× P ) ≥ 0. Similarly, to check
that P is to the left of OB, we should check #»n (̇B ×X) ≤ 0.
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O

A B

#»n

P O

A B

#»n

P

O

A B

#»n

P

left of [OA) between [OA) and
[OB)

right of [OB)

KO OK KO

There remains only one special case: if A and B are the same point on
the sphere, then #»n =

#»
0 , and then we should just check that P is also that

same point.

We arrive at the following implementation. To handle the general prob-
lem, instead of directly checking for equality between P and A or B, we
check that they are in the same direction with the cross product.

bool onSphSegment(p3 a, p3 b, p3 p) {
p3 n = a*b;
if (n == zero)

return a*p == zero && (a|p) > 0;
return (n|p) == 0 && (n|a*p) >= 0 && (n|b*p) <= 0;

}

Now we just have to put all of this together in one function. First we
check for a proper intersection, then if there is none we check segment by
segment and add the points to set S. Since (as mentioned) we can’t check
for equality directly, we use a custom set structure that checks if the cross
product is zero for every point already in the set.

struct directionSet : vector<p3> {
using vector::vector; // import constructors
void insert(p3 p) {

for (p3 q : *this) if (p*q == zero) return;
push_back(p);

}
};
directionSet intersSph(p3 a, p3 b, p3 c, p3 d) {

assert(validSegment(a, b) && validSegment(c, d));
p3 out;
if (properInter(a, b, c, d, out)) return {out};
directionSet s;
if (onSphSegment(c, d, a)) s.insert(a);
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if (onSphSegment(c, d, b)) s.insert(b);
if (onSphSegment(a, b, c)) s.insert(c);
if (onSphSegment(a, b, d)) s.insert(d);
return s;

}

3.6.5 Angles on a sphere

Given two spherical segments [AB] and [AC] on a sphere around the origin
O, how do we compute the amplitude of the angle they form on the surface
of the sphere at A? This angle is equal to the angle between planes OAB
and OAC, or more precisely between their normals A×B and A×C. Thus
we can find the angle using angle(), which gives values in [0, π].

θ BA

C

θ B

O

A×B A× C

A

C

angle ABC planes OAB, OAC

double angleSph(p3 a, p3 b, p3 c) {
return angle(a*b, a*c);

}

If instead of values in [0, π], we want to know the oriented angle3 between
[AB] and [AC], that is, how much we rotate if we go from B to C around A
counterclockwise, then we need to know on which side of plane OAB point
C lies. If C lies “to the left” of plane OAB, the angle given by angle() is
correct, but if C lies “to the right”, we should subtract it from 2π.

θ BA

C
θ CA

B

angleSph(a,b,c) ≈ 30◦ angleSph(a,b,c) ≈ 30◦

orientedAngleSph(a,b,c) ≈ 30◦ orientedAngleSph(a,b,c) ≈ 330◦

3We defined a similar notion in 2D in section 2.3.2.
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double orientedAngleSph(p3 a, p3 b, p3 c) {
if ((a*b|c) >= 0)

return angleSph(a, b, c);
else

return 2*M_PI - angleSph(a, b, c);
}

3.6.6 Spherical polygons and area

Given points P1, . . . , Pn on a sphere, let’s call spherical polygon P1 · · ·Pn
the region on the sphere delimited by spherical segments [P1P2], [P2P3], . . . ,
[PnP1], and which is on the left when travelling from P1 to P2. The counter-
clockwise order is important here because both “sides” on the contour are
valid candidates.

A
B

C

D

A
B

C

D

area of ABCD area of DCBA

Computing the area of such a spherical polygon is surprisingly simple.
First, let’s consider the case of a spherical triangle ABC. It’s area is given
by

r2(α+ β + γ − π)

where r is the radius of the sphere and α, β, γ are the amplitudes of the
three interior angles of ABC. Note that this would be equal to 0 if ABC
were on a plane, but because of the curvature of the sphere, the angles of a
triangle actually add up to more than π.

This is actually pretty easy to prove. If we prolong the segments [AB],
[BC], and [CA] into their full great-circles, this splits the sphere into 8 parts,
of which four are the direct image of each other by point reflection around
the center of the sphere. Let’s call S the area of triangle ABC, and SA (resp.
SB, SC the area of the triangle on the other side of [BC] (resp. [CA], [AB]).
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A
B

C

S

SA

SB

SC

Since those four triangles cover half of the sphere together, we have
S+SA+SB +SC = 2πr2. Besides if we take triangle ABC and the triangle
on the other side of [BC], together they form a whole spherical wedge4 of
angle α. So their combined area should be α/2π of the total area, that is
S + SA = 2αr2. Similarly, we obtain S + SB = 2βr2 and S + SC = 2γr2.

Combining those four equations, we obtain

2S = (S + SA) + (S + SB) + (S + SC)− (S + SA + SB + SC)

= r2(2α+ 2β + 2γ − 2π)

which is the desired result.

The formula can be extended to an arbitrary spherical polygon P1 · · ·Pn.
The area is given by

r2
[

sum of interior angles− (n− 2)π
]

This can be proven by decomposing the n-gon into n− 2 triangles.

double areaOnSphere(double r, vector<p3> p) {
int n = p.size();
double sum = -(n-2)*M_PI;
for (int i = 0; i < n; i++)

sum += orientedAngleSph(p[(i+1)%n], p[(i+2)%n], p[i]);
return r*r*sum;

}

3.6.7 Solid angle

The solid angle subtended by an object at an observation point O is the
apparent size of the object when looking at it from O. For example, the Sun
and the Moon have roughly the same apparent size when watched from the

4A section of a sphere determined by two flat cuts going through the center. https:
//en.wikipedia.org/wiki/Spherical_wedge
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Earth, even though their actual sizes are very different. So we say that they
subtend the same solid angle at the observation point that is Earth.

Let’s define it more precisely. Just like the planar angle subtended by
an object is the length of the object once it is projected onto a unit circle
around the point, the solid angle subtended by an object is the area of the
object once it is projected onto a unit sphere around the point.

O O

planar angle solid angle

The unit for solid angles is the steradian (sr), and because the area of
a unit sphere is 4π, a solid angle of 4π means that the observation point is
completely surrounded, while a solid angle of 2π means that half of the view
is covered.

We can easily find the solid angle subtended by a polygon by using the
function areaOnSphere() we just defined and setting r = 1. Indeed, all it
does is compute angles, so the distance from the origin O doesn’t matter.

This also allows us to find the solid angle subtended by a polyhedron if
we know which faces are visible from O.
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Math insight

The solid angle subtended by a small surface d
#»

S at a position #»r is
inversely proportional to the square of the distance from the origin,
‖ #»r ‖2, and proportional to the cosine of the angle between #»r and d

#»

S ,
because a surface seen from sideways occupies less of the view. So we
can also find solid angles with the following integral:

Ω =

∫
#»r · d #»

S

‖ #»r ‖3

3.6.8 3D winding number

We can use this notion of solid angle to implement a 3D version of winding
number that we defined in section 2.6.3. Given an observation point O and
a polyhedron, we will compute an integer that is

• 0 if O is outside the polyhedron;

• 1 if O is inside the polyhedron, and the vector areas
#»

S of the faces are
oriented towards the outside;

• −1 if O is inside the polyhedron, and the vector areas
#»

S of the faces
are oriented towards the inside.

To do this, we will consider the faces one by one. For each one, if its
vector area

#»

S points away from O, we add the solid angle it subtends to the
total, and otherwise we subtract it. That way:

• if O is outside of the polyhedron, the solid angles will cancel out;

• if O is inside of the polyhedron and the
#»

S point towards the outside,
there will mostly be additions and the total will add up to 4π;

• if O is inside the polyhedron and the
#»

S point towards the inside, there
will mostly be subtractions and the total will add up to −4π.

Dividing this total angle by 4π gives the desired winding number.

#»

S

#»

S

areaOnSphere() ≈ 0.079 areaOnSphere() ≈ 12.487

areaOnSphere() − 4π ≈ −0.079
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To find what quantity to add or subtract for each face, we will use
function areaOnSphere() directly. If

#»

S points away from O, it will return a
value in (0, 2π), the area of the projection of the face a unit sphere, which
we should keep. If

#»

S points towards O, it will return a value in (2π, 4π),
the area of the rest of the unit sphere, so we should remove 4π to get the
subtraction we want.

Since we always want the value to be in (−2π, 2π) in the end, we can
use function remainder(), giving the simple implementation below.

int windingNumber3D(vector<vector<p3>> fs) {
double sum = 0;
for (vector<p3> f : fs)

sum += remainder(areaOnSphere(1, f), 4*M_PI);
return round(sum / (4*M_PI));

}
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Appendix A

Solutions to the exercises

Exercise 1

Prove that (r1 cisϕ1) ∗ (r2 cisϕ2) = (r1r2) cis(ϕ1 +ϕ2) using this new
definition of product.

(r1 cisϕ1) ∗ (r2 cisϕ2)

= (r1 cosϕ1 + (r1 sinϕ1)i) ∗ (r2 cosϕ2 + (r2 sinϕ2)i)

= r1r2[(cosϕ1 cosϕ2 − sinϕ1 sinϕ2)

+ (cosϕ1 sinϕ2 + sinϕ1 cosϕ2)i]

= r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

= r1r2 cis(ϕ1 + ϕ2)

[Back to exercise]

Exercise 3

What value will areaPolygon() (section 2.6.1) give when applied to a
closed polyline that crosses itself, like the curve above, instead of a
simple polygon? Assume we don’t take the absolute value.

It will give the sum of the areas of the parts delimited by the curve, multi-
plied by their corresponding winding numbers. For the curve below, it will
give the sum of:

• 1 × the area of the part containing A3 and A4;

• 2 × the area of the part containing A5;

• −1 × the area of the part containing A6.
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A1

A2

A3

A4

A5

A6

[Back to exercise]

Exercise 5

Show that those properties also apply to the mixed product. For
example, ( #»u × #»v ) · #»w = ( #»v × #»w) · #»u and ( #»u × #»v ) · #»w = −( #»u × #»w) · #»v .

This can be derived from the properties of orient(P,Q,R, S) by setting P =
#»
0 , Q = #»u , R = #»v and S = #»w. Indeed, in this case

orient(P,Q,R, S) =
(

#    »

PQ× #    »

PR
)
· #   »

PS

=
[(

#»u − #»
0
)
×
(

#»v − #»
0
)]
·
(

#»w − #»
0
)

= ( #»u × #»v ) · #»w

[Back to exercise]

Exercise 6

A convenient way to check whether two lines PQ and RS are skew is

to check whether
(

#    »

PQ× #   »

RS
)
· #    »

PR 6= 0: in fact you can replace PR

by any vector going from PQ to RS.
Using the properties of dot product, cross product and orient(), prove
that (

#    »

PQ× #   »

RS
)
· #    »

PR = − orient(P,Q,R, S)

Note that for any vectors #»v and #»w we have ( #»v × #»w) · #»w = 0. This is because
#»v × #»w is perpendicular to #»w and the dot product is zero for perpendicular
vectors.
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We develop:

(
#    »

PQ× #   »

RS
)
· #    »

PR =
(

#    »

PQ×
(

#   »

PS − #    »

PR
))
· #    »

PR

=
(

#    »

PQ× #   »

PS − #    »

PQ× #    »

PR
)
· #    »

PR

=
(

#    »

PQ× #   »

PS
)
· #    »

PR−
(

#    »

PQ× #    »

PR
)
· #    »

PR

=
(

#    »

PQ× #   »

PS
)
· #    »

PR

= orient(P,Q, S,R)

= − orient(P,Q,R, S)

[Back to exercise]
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Appendix B

Omitted proofs

B.1 Precision bounds for +,−,×

We first formulate an assumption on the rounding operation round(). In
this section, M and ε are positive real constants.

Assumption 1. The rounding of a value x has a relative error of at most ε.
Therefore, if |x| ≤Md, as we will always assume of a d-dimensional value,
then

| round(x)− x| ≤Mdε

To give a solid formalism to our notions of d-dimensional values and
“computed in n operations”, we introduce the following recursive definition.

Definition 1. A quadruplets (x, x′, d, n) is a valid computation if |x| ≤Md

and one of these holds:

(a) x = x′, n = 0;

(b) (a, a′, da, na) and (b, b′, db, nb) are valid computations, n = na + nb + 1
and either:

(i) d = da = db, x = a+ b, x′ = round(a′ + b′) and |a′ + b′| ≤Md;
(ii) d = da = db, x = a− b, x′ = round(a′ − b′) and |a′ − b′| ≤Md;
(iii) d = da + db, x = ab, x′ = round(a′b′) and |a′b′| ≤Md.

Note that valid computations are strongly limited by the assumptions
we place on the magnitude of the results, both theoretical and actual.

Theorem 1. If (x, x′, d, n) is a valid computation, then

|x′ − x| ≤Md ((1 + ε)n − 1) .

We will prove the theorem by induction on the structure of valid com-
putations. We will separate the proof into two lemmas: first addition and
subtraction together in Lemma 2, then multiplication in Lemma 3.
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Lemma 1. Let f(x) = (1 + ε)x− 1. If a, b > 0, then f(a) + f(b) ≤ f(a+ b).

Proof. Clearly, f is convex. From convexity we find

f(a) ≤ b

a+ b
f(0) +

a

a+ b
f(a+ b)

f(b) ≤ a

a+ b
f(0) +

b

a+ b
f(a+ b).

Therefore, f(a) + f(b) ≤ f(0) + f(a+ b) = f(a+ b).

Lemma 2 (addition and subtraction). Let operator ∗ be either + or −. If
(a, a′, d, na) and (b, b′, d, nb) are two valid computations for which Theorem 1
holds and (a ∗ b, round(a′ ∗ b′), d, na + nb + 1) is a valid computation, then
Theorem 1 holds for it as well.

Proof. From the hypotheses know that

|a′ − a| ≤Md ((1 + ε)na − 1)

|b′ − b| ≤Md ((1 + ε)nb − 1)

|a′ ∗ b′| ≤Md.

We find

| round(a′ ∗ b′)− (a ∗ b)|
= |(round(a′ ∗ b′)− (a′ ∗ b′)) + ((a′ ∗ b′)− (a ∗ b))|
≤ | round(a′ ∗ b′)− (a′ ∗ b′)|+ |(a′ − a) ∗ (b′ − b)|
≤Mdε+ |a′ − a|+ |b′ − b|
≤Mdε+Md ((1 + ε)na − 1) +Md ((1 + ε)nb − 1)

= Md [f(1) + f(na) + f(nb)]

≤Md f(na + nb + 1)

= Md
(
(1 + ε)na+nb+1 − 1

)

where the step before last follows from two applications of Lemma 1.

Lemma 3 (multiplication). If (a, a′, da, na) and (b, b′, db, nb) are two valid
computations for which Theorem 1 holds and (ab, round(a′b′), da + db, na +
nb + 1) is a valid computation, then Theorem 1 holds for it as well.
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Proof. From the hypotheses we know that

|a| ≤Md

|b| ≤Md

|a′ − a| ≤Mda ((1 + ε)na − 1)

|b′ − b| ≤Mda ((1 + ε)nb − 1)

|a′b′| ≤Mda+db .

We find

| round(a′b′)− ab)|
= |(round(a′b′)− a′b′) + (a′b′ − ab)|
≤ | round(a′b′)− a′b′|+ |(a′ − a)b+ (b′ − b)a+ (a′ − a)(b′ − b)|
≤ Mda+dbε+ |a′ − a||b|+ |b′ − b||a|+ |a′ − a||b′ − b|
≤ Mda+dbε+Mda ((1 + ε)na − 1)Mdb +Mdb ((1 + ε)nb − 1)Mda

+Mda ((1 + ε)na − 1)Mdb ((1 + ε)nb − 1)

= Mda+db
[
ε+ ((1 + ε)na − 1) + ((1 + ε)nb − 1)

+ ((1 + ε)na − 1) ((1 + ε)nb − 1)
]

= Mda+db
[
ε+ (1 + ε)na+nb − 1

]

= Mda+db [f(1) + f(na + nb)]

≤ Mda+db f(na + nb + 1)

= Mda+db
(
(1 + ε)na+nb+1 − 1

)

where the step before last follows from Lemma 1.

Proof of Theorem 1. By induction on the recursive structure of valid com-
putations (see Definition 1). Case (a) is trivial because |x′ − x| = 0. For
case (b), the inductive step for (i) and (ii) follows from Lemma 2 while that
of (iii) follows from Lemma 3.
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